Как перевести сантипуазы в сантистоксы
Перевод кинематической вязкости в динамическую
Воспользуйтесь удобным конвертером перевода кинематической вязкости в динамическую онлайн. Поскольку соотношение кинематической и динамической вязкости зависит от плотности, то необходимо ее также указывать при расчете в калькуляторах ниже.
Плотность и вязкость следует указывать при одинаковой температуре.
Если задать плотность при температуре отличной от температуры вязкости повлечет некоторую ошибку, степень которой будет зависеть от влияния температуры на изменение плотности для данного вещества.
Калькулятор перевода кинематической вязкости в динамическую
Конвертер позволяет перевести вязкость с размерностью в сантистоксах [сСт] в сантипуазы [сП]. Обратите внимание, что численные значения величин с размерностями [мм2/с] и [сСт] для кинематической вязкости и [сП] и [мПа*с] для динамической – равны между собой и не требуют дополнительного перевода. Для других размерностей – воспользуйтесь таблицами ниже.
Данный калькулятор выполняет обратное действие предыдущему.
Таблицы перевода размерностей вязкости
В случае, если размерность Вашей величины не совпадает с используемой в калькуляторе, воспользуйтесь таблицами перевода.
Выберете размерность в левом столбце и умножьте свою величину на множитель, находящийся в ячейке на пересечении с размерностью в верхней строчке.
Табл. 1. Перевод размерностей кинематической вязкости ν 
Табл. 2. Перевод размерностей динамической вязкости μ
Связь динамической и кинематической вязкости
Вязкость жидкости определяет способность жидкости сопротивляться сдвигу при ее движении, а точнее сдвигу слоев относительно друг друга. Поэтому на производствах, где требуется перекачка различных сред, важно точно знать вязкость перекачиваемого продукта и правильно подбирать насосное оборудование.
В технике встречаются два вида вязкости.
Перевод кинематической вязкости в динамическую производят с помощью формулы, указанной ниже, через плотность при заданной температуре:
v – кинематическая вязкость,
n – динамическая вязкость,
p – плотность.
Таким образом, зная ту или иную вязкость и плотность жидкости можно выполнить пересчет одного вида вязкости в другой по указанной формуле или через конвертер выше.
Измерение вязкости
Понятия для этих двух типов вязкости присуще только жидкостям в связи с особенностями способов измерения.
Измерение кинематической вязкости используют метод истечения жидкости через капилляр (например используя прибор Уббелоде). Измерение динамической вязкости происходит через измерение сопротивление движения тела в жидкости (например сопротивление вращению погруженного в жидкость цилиндра).
От чего зависит значение величины вязкости?
Вязкость жидкости зависит в значительной мере от температуры. С увеличением температуры вещество становится более текучим, то есть менее вязким. Причем изменение вязкости, как правило, происходит достаточно резко, то есть нелинейно.
Поскольку расстояние между молекулами жидкого вещества намного меньше, чем у газов, у жидкостей уменьшается внутреннее взаимодействие молекул из-за снижения межмолекулярных связей.
Форма молекул и их размер, а также взаимоположение и взаимодействие могут определять вязкость жидкости. Также влияет их химическая структура.
Например, для органических соединений вязкость возрастает при наличии полярных циклов и групп.
Для насыщенных углеводородов – рост происходит при “утяжелении” молекулы вещества.
Как перевести сантипуазы в сантистоксы
Физические величины. Вязкость жидкости
Вязкость – свойство жидкости, которое определяет сопротивление жидкости к внешнему воздействию. Вязкость можно представить как внутреннее трение между отдельными слоями жидкости при их смещении относительно друг друга.
Существуют два основных параметра для определения вязкости жидкости: динамическая (или абсолютная) вязкость и кинематическая вязкость. Динамическая вязкость представляется как отношение единицы силы, необходимой для смещения слоя жидкости на единицу расстояния, к единице площади слоя.
Определяющее уравнение для динамической вязкости
В международной системе единиц СИ при выражении единицы давления сдвига F/S в паскалях, градиента скорости grad υ (изменение скорости жидкости, отнесённого к расстоянию между слоями) в секундах в минус первой степени динамическая вязкость µ выразится в паскалях-секундах (П·с). В метрической системе единица вязкости представляется в грамм/сантиметр в секунду, называемой пуаз. Принятое обозначение пуаз – П
1 П·с = 10 пуаз.
Единицы измерения динамической вязкости паскаль-секунда и пуаз значительны по своему размеру и применяют дольные единицы – миллипаскаль-секунда мПа и сантипуаз сП
1 мПа·с = 1 сП.
Переводные множители для расчёта динамической вязкости приведены в таблице.
Формула для определения кинематической вязкости при заданной динамической вязкости выглядит так:
Единица измерения кинематической вязкости в системе СИ – квадратный метр на секунду, в метрической системе – квадратный сантиметр на секунду называемый стокс. Принятое обозначение стокса – Ст.
Единица измерения кинематической вязкости квадратный метр на секунду и стокс значительна по своему размеру и для практических применений используют дольные единицы – квадратный миллиметр на секунду и сантистокс сСт
Переводные множители для расчёта кинематической вязкости приведены в таблице:
При необходимости пересчёта параметров вязкости можно воспользоваться соотношением соблюдая размерности физических величин, например:
ХИМИЯ НЕФТИ
ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА
Понятие вязкости
Вязкость является важнейшей физической константой, характеризующей эксплуатационные свойства котельных и дизельных топлив, нефтяных масел, ряда других нефтепродуктов. По значению вязкости судят о возможности распыления и прокачиваемости нефти и нефтепродуктов.
Различают динамическую, кинематическую, условную и эффективную (структурную) вязкость.
Переводные множители для расчета динамической [μ] вязкости.
Переводные множители для расчета кинематической [ν] вязкости.
Условная вязкость измеряется в градусах ВУ (°ВУ) (если испытание проводится в стандартном вискозиметре по ГОСТ 6258-85), секундах Сейболта и секундах Редвуда (если испытание проводится на вискозиметрах Сейболта и Редвуда).
Перевести вязкость из одной системы в другую можно при помощи номограммы.
В нефтяных дисперсных системах в определенных условиях в отличие от ньютоновских жидкостей вязкость является переменной величиной, зависящей от градиента скорости сдвига. В этих случаях нефти и нефтепродукты характеризуются эффективной или структурной вязкостью:
Кинематическая вязкость определяется для относительно маловязких светлых нефтепродуктов и масел с помощью капиллярных вискозиметров, действие которых основано на текучести жидкости через капилляр по ГОСТ 33-2000 и ГОСТ 1929-87 (вискозиметр типа ВПЖ, Пинкевича и др.).
Для вязких нефтепродуктов измеряется условная вязкость в вискозиметрах типа ВУ, Энглера и др. Истечение жидкости в этих вискозиметрах происходит через калиброванное отверстие по ГОСТ 6258-85.
Между величинами условной °ВУ и кинематической вязкости существует эмпирическая зависимость:
Вязкость наиболее вязких, структурированных нефтепродуктов определяется на ротационном вискозиметре по ГОСТ 1929-87. Метод основан на измерении усилия, необходимого для вращения внутреннего цилиндра относительно наружного при заполнении пространства между ними испытуемой жидкостью при температуре t.
Кроме стандартных методов определения вязкости иногда в исследовательских работах используются нестандартные методы, основанные на измерении вязкости по времени падения калибровочного шарика между метками или по времени затухания колебаний твердого тела в испытуемой жидкости (вискозиметры Гепплера, Гурвича и др.).
Во всех описанных стандартных методах вязкость определяют при строго постоянной температуре, поскольку с ее изменением вязкость существенно меняется.
Зависимость вязкости от температуры
Зависимость вязкости нефтепродуктов от температуры является очень важной характеристикой как в технологии переработки нефти (перекачка, теплообмен, отстой и т. д.), так и при применении товарных нефтепродуктов (слив, перекачка, фильтрование, смазка трущихся поверхностей и т. д.).
С понижением температуры вязкость их возрастает. На рисунке приведены кривые изменения вязкости в зависимости от температуры для различных смазочных масел.
Общим для всех образцов масел является наличие областей температур, в которых наступает резкое повышение вязкости.
Существует много различных формул для расчета вязкости в зависимости от температуры, но наиболее употребляемой является эмпирическая формула Вальтера:
Дважды логарифмируя это выражение, получаем:
По номограмме можно найти вязкость нефтепродукта при любой заданной температуре, если известна его вязкость при двух других температурах. В этом случае значение известных вязкостей соединяют прямой и продолжают ее до пересечения с линией температуры. Точка пересечения с ней отвечает искомой вязкости. Номограмма пригодна для определения вязкости всех видов жидких нефтепродуктов.
Существуют различные методы определения индекса вязкости (ИВ).
Для всех масел с ν100 2 /с вязкости (ν, ν1 и ν3) определяют по таблице ГОСТ 25371-97 на основе ν40 и ν100 данного масла. Если масло более вязкое (ν100 > 70 мм 2 /с), то величины, входящие в формулу, определяют по специальным формулам, приведенным в стандарте.
Значительно проще определять индекс вязкости по номограммам.
Многими исследователями было подмечено, что плотность и вязкость смазочных масел до некоторой степени отражают их углеводородный состав. Был предложен соответствующий показатель, связывающий плотность и вязкость масел и названный вязкостно-массовой константой (ВМК). Вязкостно-массовая константа может быть вычислена по формуле Ю. А. Пинкевича:
В области низких температур смазочные масла приобретают структуру, которая характеризуется пределом текучести, пластичности, тиксотропностью или аномалией вязкости, свойственными дисперсным системам. Результаты определения вязкости таких масел зависят от их предварительного механического перемешивания, а также от скорости истечения или от обоих факторов одновременно. Структурированные масла, так же как и другие структурированные нефтяные системы, не подчиняются закону течения ньютоновских жидкостей, согласно которому изменение вязкости должно зависеть только от температуры.
Зависимость вязкости от давления
Вязкость жидкостей, в том числе и нефтепродуктов, зависит от внешнего давления. Изменение вязкости масел с повышением давления имеет большое практическое значение, так как в некоторых узлах трения могут возникать высокие давления.
Зависимость вязкости от давления для некоторых масел иллюстрируется кривыми, вязкость масел с повышением давления изменяется по параболе. При давлении Р она может быть выражена формулой:
В нефтяных маслах меньше всего с повышением давления изменяется вязкость парафиновых углеводородов и несколько больше нафтеновых и ароматических. Вязкость высоковязких нефтепродуктов с увеличением давления повышается больше, чем вязкость маловязких. Чем выше температура, тем меньше изменяется вязкость с повышением давления.
Для определения вязкости нефтепродуктов при высоком давлении Д.Э.Мапстон предложил формулу:
На основе этого уравнения Д.Э.Мапстоном разработана номограмма, при пользовании которой известные величины, например ν0 и Р, соединяют прямой линией и отсчет получают на третьей шкале.
Вязкость смесей
Вязкость газов и нефтяных паров
Вязкость углеводородных газов и нефтяных паров подчиняется иным, чем для жидкостей, закономерностям. С повышением температуры вязкость газов возрастает. Эта закономерность удовлетворительно описывается формулой Сазерленда:
Для приближенных расчетов принимаем, что С = 1,22·Ткип. Более точные значения С и m.
Для расчета вязкости индивидуальных углеводородных газов применяется формула:
Вязкость газов, нефтяных паров можно определить по графическим зависимостям:
Вязкость природных газов известной молекулярной массы или относительной плотности (по воздуху) при атмосферном давлении и заданной температуре может быть определена по кривым, представленным на рисунке.
Как видно из рисунка, с повышением относительной плотности и понижением температуры вязкость газа уменьшается.
Вязкость газов мало зависит от давления в области до 5-6 МПа. При более высоких давлениях она растет и при давлении около 100 МПа увеличивается в 2-3 раза по сравнению с вязкостью при атмосферном давлении. Для определения вязкости при повышенных давлениях пользуются эмпирическими графиками.
Сведения о вязкости
Вязкость – свойство газов и жидкостей оказывать сопротивление необратимому перемещению одной их части относительно другой при сдвиге, растяжении и других видах деформации.
Различают динамическую (или абсолютную) вязкость и кинематическую вязкость.
Динамическая (абсолютная) вязкость µ – сила, действующая на единичную площадь плоской поверхности, которая перемещается с единичной скоростью относительно другой плоской поверхности, находящейся от первой на единичном расстоянии.
В системе СИ динамическая вязкость выражается в Па⋅с (паскаль-секунда), внесистемная единица П (пуаз).
Соотношение величин динамической вязкости в различных единицах измерения
| Единицы измерения | Па⋅с | сП | П | кгс⋅с/м 2 | Н⋅с/м 2 | дин⋅с/cм 2 | г/(см⋅с) |
| 1 Па⋅с паскаль-секунда | 1 | 1000 | 10 | 0,102 | 1 | 10 | 10 |
| 1 сП сантипуаз | 0,001 | 1 | 0,01 | 0,0001 | 0,001 | 0,01 | 0,01 |
| 1 П пуаз | 0,1 | 100 | 1 | 0,01 | 0,1 | 1 | 1 |
| 1 кгс⋅с/м 2 килограмм-сила-секунда на квадратный метр | 9,81 | 9806,7 | 98,07 | 1 | 9,81 | 98,07 | 98,07 |
| 1 Н⋅с/м 2 ньютон-секунда на квадратный метр | 1 | 1000 | 10 | 0,102 | 1 | 10 | 10 |
| 1 дин⋅с/см 2 дина-секунда на квадратный сантиметр | 0,1 | 100 | 1 | 0,01 | 0,1 | 1 | 1 |
| 1 г/(см⋅с) грамм на сантиметр на секунду | 0,1 | 100 | 1 | 0,01 | 0,1 | 1 | 1 |
Кинематическая вязкость ν – отношение динамической вязкости µ к плотности жидкости ρ.
где:
ν, м 2 /с – кинематическая вязкость;
μ, Па⋅с – динамическая вязкость;
ρ, кг/м 3 – плотность жидкости.
В системе СИ кинематическая вязкость выражается в м 2 /с (квадратный метр в секунду), внесистемная единица Ст (стокс).
Соотношение величин кинематической вязкости в различных единицах измерения
перевести сантистокс в сантипуаз
Перевод кинематической вязкости в динамическую
Воспользуйтесь удобным конвертером перевода кинематической вязкости в динамическую онлайн. Поскольку соотношение кинематической и динамической вязкости зависит от плотности, то необходимо ее также указывать при расчете в калькуляторах ниже.
Плотность и вязкость следует указывать при одинаковой температуре.
Если задать плотность при температуре отличной от температуры вязкости повлечет некоторую ошибку, степень которой будет зависеть от влияния температуры на изменение плотности для данного вещества.
Калькулятор перевода кинематической вязкости в динамическую
Конвертер позволяет перевести вязкость с размерностью в сантистоксах [сСт] в сантипуазы [сП]. Обратите внимание, что численные значения величин с размерностями [мм2/с] и [сСт] для кинематической вязкости и [сП] и [мПа*с] для динамической – равны между собой и не требуют дополнительного перевода. Для других размерностей – воспользуйтесь таблицами ниже.
Данный калькулятор выполняет обратное действие предыдущему.
Таблицы перевода размерностей вязкости
В случае, если размерность Вашей величины не совпадает с используемой в калькуляторе, воспользуйтесь таблицами перевода.
Выберете размерность в левом столбце и умножьте свою величину на множитель, находящийся в ячейке на пересечении с размерностью в верхней строчке.
Табл. 1. Перевод размерностей кинематической вязкости ν
Табл. 2. Перевод размерностей динамической вязкости μ
Связь динамической и кинематической вязкости
Вязкость жидкости определяет способность жидкости сопротивляться сдвигу при ее движении, а точнее сдвигу слоев относительно друг друга. Поэтому на производствах, где требуется перекачка различных сред, важно точно знать вязкость перекачиваемого продукта и правильно подбирать насосное оборудование.
В технике встречаются два вида вязкости.
Перевод кинематической вязкости в динамическую производят с помощью формулы, указанной ниже, через плотность при заданной температуре:
v – кинематическая вязкость,
n – динамическая вязкость,
p – плотность.
Таким образом, зная ту или иную вязкость и плотность жидкости можно выполнить пересчет одного вида вязкости в другой по указанной формуле или через конвертер выше.
Измерение вязкости
Понятия для этих двух типов вязкости присуще только жидкостям в связи с особенностями способов измерения.
Измерение кинематической вязкости используют метод истечения жидкости через капилляр (например используя прибор Уббелоде). Измерение динамической вязкости происходит через измерение сопротивление движения тела в жидкости (например сопротивление вращению погруженного в жидкость цилиндра).
От чего зависит значение величины вязкости?
Вязкость жидкости зависит в значительной мере от температуры. С увеличением температуры вещество становится более текучим, то есть менее вязким. Причем изменение вязкости, как правило, происходит достаточно резко, то есть нелинейно.
Поскольку расстояние между молекулами жидкого вещества намного меньше, чем у газов, у жидкостей уменьшается внутреннее взаимодействие молекул из-за снижения межмолекулярных связей.
Форма молекул и их размер, а также взаимоположение и взаимодействие могут определять вязкость жидкости. Также влияет их химическая структура.
Например, для органических соединений вязкость возрастает при наличии полярных циклов и групп.
Для насыщенных углеводородов – рост происходит при “утяжелении” молекулы вещества.
ХИМИЯ НЕФТИ
ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА
Понятие вязкости
Вязкость является важнейшей физической константой, характеризующей эксплуатационные свойства котельных и дизельных топлив, нефтяных масел, ряда других нефтепродуктов. По значению вязкости судят о возможности распыления и прокачиваемости нефти и нефтепродуктов.
Различают динамическую, кинематическую, условную и эффективную (структурную) вязкость.
Переводные множители для расчета динамической [μ] вязкости.
Переводные множители для расчета кинематической [ν] вязкости.
Условная вязкость измеряется в градусах ВУ (°ВУ) (если испытание проводится в стандартном вискозиметре по ГОСТ 6258-85), секундах Сейболта и секундах Редвуда (если испытание проводится на вискозиметрах Сейболта и Редвуда).
Перевести вязкость из одной системы в другую можно при помощи номограммы.
В нефтяных дисперсных системах в определенных условиях в отличие от ньютоновских жидкостей вязкость является переменной величиной, зависящей от градиента скорости сдвига. В этих случаях нефти и нефтепродукты характеризуются эффективной или структурной вязкостью:
Кинематическая вязкость определяется для относительно маловязких светлых нефтепродуктов и масел с помощью капиллярных вискозиметров, действие которых основано на текучести жидкости через капилляр по ГОСТ 33-2000 и ГОСТ 1929-87 (вискозиметр типа ВПЖ, Пинкевича и др.).
Для вязких нефтепродуктов измеряется условная вязкость в вискозиметрах типа ВУ, Энглера и др. Истечение жидкости в этих вискозиметрах происходит через калиброванное отверстие по ГОСТ 6258-85.
Между величинами условной °ВУ и кинематической вязкости существует эмпирическая зависимость:
Вязкость наиболее вязких, структурированных нефтепродуктов определяется на ротационном вискозиметре по ГОСТ 1929-87. Метод основан на измерении усилия, необходимого для вращения внутреннего цилиндра относительно наружного при заполнении пространства между ними испытуемой жидкостью при температуре t.
Кроме стандартных методов определения вязкости иногда в исследовательских работах используются нестандартные методы, основанные на измерении вязкости по времени падения калибровочного шарика между метками или по времени затухания колебаний твердого тела в испытуемой жидкости (вискозиметры Гепплера, Гурвича и др.).
Во всех описанных стандартных методах вязкость определяют при строго постоянной температуре, поскольку с ее изменением вязкость существенно меняется.
Зависимость вязкости от температуры
Зависимость вязкости нефтепродуктов от температуры является очень важной характеристикой как в технологии переработки нефти (перекачка, теплообмен, отстой и т. д.), так и при применении товарных нефтепродуктов (слив, перекачка, фильтрование, смазка трущихся поверхностей и т. д.).
С понижением температуры вязкость их возрастает. На рисунке приведены кривые изменения вязкости в зависимости от температуры для различных смазочных масел.
Общим для всех образцов масел является наличие областей температур, в которых наступает резкое повышение вязкости.
Существует много различных формул для расчета вязкости в зависимости от температуры, но наиболее употребляемой является эмпирическая формула Вальтера:
Дважды логарифмируя это выражение, получаем:
По номограмме можно найти вязкость нефтепродукта при любой заданной температуре, если известна его вязкость при двух других температурах. В этом случае значение известных вязкостей соединяют прямой и продолжают ее до пересечения с линией температуры. Точка пересечения с ней отвечает искомой вязкости. Номограмма пригодна для определения вязкости всех видов жидких нефтепродуктов.
Существуют различные методы определения индекса вязкости (ИВ).
Для всех масел с ν100 2 /с вязкости (ν, ν1 и ν3) определяют по таблице ГОСТ 25371-97 на основе ν40 и ν100 данного масла. Если масло более вязкое (ν100 > 70 мм 2 /с), то величины, входящие в формулу, определяют по специальным формулам, приведенным в стандарте.
Значительно проще определять индекс вязкости по номограммам.
Многими исследователями было подмечено, что плотность и вязкость смазочных масел до некоторой степени отражают их углеводородный состав. Был предложен соответствующий показатель, связывающий плотность и вязкость масел и названный вязкостно-массовой константой (ВМК). Вязкостно-массовая константа может быть вычислена по формуле Ю. А. Пинкевича:
В области низких температур смазочные масла приобретают структуру, которая характеризуется пределом текучести, пластичности, тиксотропностью или аномалией вязкости, свойственными дисперсным системам. Результаты определения вязкости таких масел зависят от их предварительного механического перемешивания, а также от скорости истечения или от обоих факторов одновременно. Структурированные масла, так же как и другие структурированные нефтяные системы, не подчиняются закону течения ньютоновских жидкостей, согласно которому изменение вязкости должно зависеть только от температуры.
Зависимость вязкости от давления
Вязкость жидкостей, в том числе и нефтепродуктов, зависит от внешнего давления. Изменение вязкости масел с повышением давления имеет большое практическое значение, так как в некоторых узлах трения могут возникать высокие давления.
Зависимость вязкости от давления для некоторых масел иллюстрируется кривыми, вязкость масел с повышением давления изменяется по параболе. При давлении Р она может быть выражена формулой:
В нефтяных маслах меньше всего с повышением давления изменяется вязкость парафиновых углеводородов и несколько больше нафтеновых и ароматических. Вязкость высоковязких нефтепродуктов с увеличением давления повышается больше, чем вязкость маловязких. Чем выше температура, тем меньше изменяется вязкость с повышением давления.
Для определения вязкости нефтепродуктов при высоком давлении Д.Э.Мапстон предложил формулу:
На основе этого уравнения Д.Э.Мапстоном разработана номограмма, при пользовании которой известные величины, например ν0 и Р, соединяют прямой линией и отсчет получают на третьей шкале.
Вязкость смесей
Вязкость газов и нефтяных паров
Вязкость углеводородных газов и нефтяных паров подчиняется иным, чем для жидкостей, закономерностям. С повышением температуры вязкость газов возрастает. Эта закономерность удовлетворительно описывается формулой Сазерленда:
Для приближенных расчетов принимаем, что С = 1,22·Ткип. Более точные значения С и m.
Для расчета вязкости индивидуальных углеводородных газов применяется формула:
Вязкость газов, нефтяных паров можно определить по графическим зависимостям:
Вязкость природных газов известной молекулярной массы или относительной плотности (по воздуху) при атмосферном давлении и заданной температуре может быть определена по кривым, представленным на рисунке.
Как видно из рисунка, с повышением относительной плотности и понижением температуры вязкость газа уменьшается.
Вязкость газов мало зависит от давления в области до 5-6 МПа. При более высоких давлениях она растет и при давлении около 100 МПа увеличивается в 2-3 раза по сравнению с вязкостью при атмосферном давлении. Для определения вязкости при повышенных давлениях пользуются эмпирическими графиками.























