задание 9 номер 311315
Задание 9 номер 311315
Решите систему уравнений В ответ запишите х + у.
Разделим обе части первого уравнения на 2 и решим систему методом подстановки:
Искомая сумма равна 3,5.
Систему можно было бы решить методом алгебраического сложения:
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна 5.
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна 3.
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна −1.
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна 5.
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна 1.
Решите систему неравенств
На каком рисунке изображено множество её решений?
В ответе укажите номер правильного варианта.
Решением системы является отрезок, изображённый под номером 2.
Правильный ответ указан под номером 2.
Решите систему неравенств
На каком из рисунков изображено множество её решений?
В ответе укажите номер правильного варианта.
Правильный ответ указан под номером 3.
Решите систему неравенств
На каком рисунке изображено множество её решений?
В ответе укажите номер правильного варианта.
Решим систему неравенств:
Решение неравенства изображено под номером 4.
Решите систему неравенств
Решим первое неравенство системы:
Выражение всегда больше нуля поэтому данное неравенство эквивалентно неравенству
Решим второе неравенство:
Пересекая решения обоих неравенств, получим, что решением системы является отрезок
Ответ:
Можно сразу заметить, что в знаменателе первого выражения стоит квадрат числа плюс положительное число, значит, знаменатель всегда больше нуля.
Решите систему уравнений
Выразим переменную из второго уравнения и подставим в первое:
Решим первое уравнение системы. Пусть
Тогда
Система имеет четыре пары решений:
Ответ: (−1; −6); (1; 6); (−6; −1); (6; 1).
Решите систему уравнений
Преобразуем систему уравнений:
откуда получаем решения системы уравнений : (2; −1) и (2; 1).
откуда здесь получилось 22=11х? можно расписать подробнее?
Алина, домножили на два верхнюю часть и после этого сложили с нижней.
Решите систему неравенств
Используя тот факт, что знаменатель первого неравенства всегда больше нуля, преобразуем систему неравенств:
А куда делся знаменатель в первой части? Его можно просто так выкидывать?
Никита, знаменатель в первом уравнении всегда больше ноля, поэтому мы его не учитываем.
Решите систему неравенств
Преобразуем систему неравенств:
Аналоги к заданию № 338522: 341418 Все
Решите систему уравнений
Подставим во второе уравнение системы, получим уравнение относительно
. Отсюда
. Подставим
в уравнение
, получим:
Решите систему уравнений
Подставим во второе уравнение системы, получим уравнение относительно
. Отсюда
и
. Подставим
и
в уравнение
, получим:
и
соответственно.
Задание 9 номер 311315
Решите систему уравнений В ответ запишите х + у.
Разделим обе части первого уравнения на 2 и решим систему методом подстановки:
Искомая сумма равна 3,5.
Систему можно было бы решить методом алгебраического сложения:
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна 5.
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна 3.
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна −1.
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна 1.
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна 5.
Решите систему уравнений
Выразим переменную из второго уравнения и подставим в первое:
Решим первое уравнение системы. Пусть
Тогда
Система имеет четыре пары решений:
Ответ: (−1; −6); (1; 6); (−6; −1); (6; 1).
Решите систему уравнений
Преобразуем систему уравнений:
откуда получаем решения системы уравнений : (2; −1) и (2; 1).
откуда здесь получилось 22=11х? можно расписать подробнее?
Алина, домножили на два верхнюю часть и после этого сложили с нижней.
Решите систему уравнений
Выразим одну переменную через другую из второго уравнения и подставим полученное выражение в первое уравнение
Заметим, что пара корней не является корнями уравнения, потому что при
знаменатель второго уравнения обращается в ноль.
Решите систему уравнений
Из второго уравнения системы получаем Первое уравнение системы принимает вид
Уравнение x 2 = 1 имеет корни x = −1 и x = 1.
Уравнение x 2 = 9 имеет корни x = −3 и x = 3.
Значит, решение исходной системы: (−1; −3), (1; 3), (−3; −1) и (3; 1).
Ответ: (−1; −3), (1; 3), (−3; −1); (3; 1).
Аналоги к заданию № 338894: 341366 Все
Решите систему уравнений
Подставим во второе уравнение системы, получим уравнение относительно
. Отсюда
. Подставим
в уравнение
, получим:
Решите систему уравнений
Сложив два уравнения системы, получаем откуда
или
При получаем
При получаем
Решения системы уравнений: и
Ответ:
Решите систему уравнений
Подставим во второе уравнение системы, получим уравнение относительно
. Отсюда
и
. Подставим
и
в уравнение
, получим:
и
соответственно.
Задание 9 номер 311315
Решите систему уравнений В ответ запишите х + у.
Разделим обе части первого уравнения на 2 и решим систему методом подстановки:
Искомая сумма равна 3,5.
Систему можно было бы решить методом алгебраического сложения:
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна 5.
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна 3.
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна −1.
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна 5.
Решите систему уравнений В ответ запишите х + у.
Решим систему методом подстановки:
Искомая сумма равна 1.
Решите систему уравнений
Выразим переменную из второго уравнения и подставим в первое:
Решим первое уравнение системы. Пусть
Тогда
Система имеет четыре пары решений:
Ответ: (−1; −6); (1; 6); (−6; −1); (6; 1).
Решите систему уравнений
Преобразуем систему уравнений:
откуда получаем решения системы уравнений : (2; −1) и (2; 1).
откуда здесь получилось 22=11х? можно расписать подробнее?
Алина, домножили на два верхнюю часть и после этого сложили с нижней.
Решите систему уравнений
Из второго уравнения системы получаем Первое уравнение системы принимает вид
Уравнение x 2 = 1 имеет корни x = −1 и x = 1.
Уравнение x 2 = 9 имеет корни x = −3 и x = 3.
Значит, решение исходной системы: (−1; −3), (1; 3), (−3; −1) и (3; 1).
Ответ: (−1; −3), (1; 3), (−3; −1); (3; 1).
Аналоги к заданию № 338894: 341366 Все
Решите систему уравнений
Выразим одну переменную через другую из второго уравнения и подставим полученное выражение в первое уравнение
Заметим, что пара корней не является корнями уравнения, потому что при
знаменатель второго уравнения обращается в ноль.
Решите систему уравнений
Подставим во второе уравнение системы, получим уравнение относительно
. Отсюда
. Подставим
в уравнение
, получим:
Решите систему уравнений
Подставим во второе уравнение системы, получим уравнение относительно
. Отсюда
и
. Подставим
и
в уравнение
, получим:
и
соответственно.