Молнию характеризуют как упругую волну
Молния как физическое явление
Для формирования молнии необходимо возникновение и разделение положительных и отрицательных зарядов в грозовом облаке. При движении воздуха за счет конвекции различные воздушные потоки и облака в результате соприкосновения электризуются. Положительно заряженные капли воды и льдинки поднимаются, заряжая верхнюю часть грозового облака, а отрицательно заряженные оказываются внизу того же облака. Между двумя облаками, а также между облаками и землей возникает мощное электрическое поле. Рассмотрим последний случай.
Молния — это электрический разряд в атмосфере, сопровождающийся вспышкой света и последующим громом. Светящийся канал разряда напоминает разветвляющуюся реку или дерево. Ее возникновению предшествует образование проводящего канала для разряда молнии в виде ломаной линии, так называемого ступенчатого лидера. Длина каждой такой «ступеньки» — около 50 м. На таком отрезке электроны под действием сильного электрического поля между тучей и землей разгоняются до скоростей порядка 50 000 км/с! Ионизировав огромное количество атомов, первичные электроны теряют энергию и тормозятся. Зато вновь образовавшиеся электроны быстро разгоняются до столь же высоких скоростей, и возникает следующее звено лидера. И так продолжается до тех пор, пока он не достигнет земли.
Облако и земля оказываются соединенными проводящим каналом, содержащим громадное количество носителей заряда. Иными словами, это проводник электрического тока. Теперь электроны нижней части тучи могут свободно сигануть вниз, на землю. Происходит как бы короткое замыкание между тучей и поверхностью земли — мощный электрический разряд, то есть бьет молния. Когда весь отрицательный заряд этой части тучи сбегает по такому каналу вниз, молния исчезает. Вспышка длится десятые доли секунды. Но бывают случаи, когда после первой молнии по тому же каналу бежит новый лидер — происходят второй разряд и вспышка молнии. Интервалы между последовательными импульсами очень коротки, от 1/100 до 1/10 с. Число таких повторных вспышек может доходить до 40.
Готовим молнию
Мы и сами можем смоделировать молнию, пусть и миниатюрную. Опыт следует проводить в темном помещении, иначе ничего не будет видно. Нам потребуется два продолговатых воздушных шарика. Надуем их и завяжем. Затем, следя, чтобы шарики не соприкасались, одновременно натрем их шерстяной тряпочкой. Воздух, наполняющий их, наэлектризуется. Если шарики сблизить, оставив между ними минимальный зазор, то от одного к другому через тонкий слой воздуха начнут проскакивать искры, создавая световые вспышки. Одновременно мы услышим слабое потрескивание — миниатюрную копию грома при грозе.
Мы проводники!
Человеческое тело является хорошим проводником. Его мускулы и кровеносные сосуды в значительной степени состоят из воды, а нервы способны переносить электрические сигналы. Интересно, что 86% жертв молний — мужчины. То ли у них физиология особенная, то ли они бывают на свежем воздухе чаще женщин, проводящих большую часть жизни дома.
Человек имеет значительные шансы выжить при ударе молнии в него. Конечно, температура во время разряда очень высока, но длится он обычно недолго и не всегда приводит к серьезным ожогам. Основной ток молнии часто проходит по поверхности тела, поэтому большинство пораженных молнией людей не умирают.
Физика атмосферы: как, почему и откуда появляются молнии
Каждую секунду в атмосфере Земли возникает примерно 700 молний, и каждый год около 3000 человек погибают из-за удара молнии. Физическая природа молнии не объяснена окончательно, а большинство людей имеют лишь приблизительное представление о том, что это такое. Какие-то разряды сталкиваются в облаках, или что-то в этом роде. Сегодня мы обратились к нашим авторам по физике, чтобы узнать о природе молнии больше. Как появляется молния, куда бьет молния, и почему гремит гром. Прочитав статью, вы будете знать ответ на эти и многие другие вопросы.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Что такое молния
Молния – искровой электрический разряд в атмосфере.
Электрический разряд – это процесс протекания тока в среде, связанный с существенным увеличением ее электропроводности относительно нормального состояния. Существуют разные виды электрических разрядов в газе: искровой, дуговой, тлеющий.
Искровой разряд происходит при атмосферном давлении и сопровождается характерным треском искры. Искровой разряд представляет собой совокупность исчезающих и сменяющих друг друга нитевидных искровых каналов. Искровые каналы также называют стримерами. Искровые каналы заполнены ионизированным газом, то есть плазмой. Молния – гигантская искра, а гром – очень громкий треск. Но не все так просто.
Физическая природа молнии
Как объясняют происхождение молнии? Система туча-земля или туча-туча представляет собой своеобразный конденсатор. Воздух играет роль диэлектрика между облаками. Нижняя часть облака имеет отрицательный заряд. При достаточной разности потенциалов между тучей и землей возникают условия, в которых происходит образование молнии в природе.
Ступенчатый лидер
Перед основной вспышкой молнии можно наблюдать небольшое пятно, движущееся от тучи к земле. Это так называемый ступенчатый лидер. Электроны под действием разности потенциалов, начинают двигаться к земле. Двигаясь, они сталкиваются с молекулами воздуха, ионизируя их. От тучи к земле прокладывается как бы ионизированный канал. Из-за ионизации воздуха свободными электронами электропроводность в зоне траектории лидера существенно возрастает. Лидер как бы прокладывает путь для основного разряда, двигаясь от одного электрода (тучи) к другому (земле). Ионизация происходит неравномерно, поэтому лидер может разветвляться.
Обратная вспышка
В момент, когда лидер приближается к земле, напряженность на его конце растет. Из земли или из предметов, выступающих над поверхностью (деревья, крыши зданий) навстречу лидеру выбрасывается ответный стример (канал). Это свойство молний используется для защиты от них путем установки громоотвода. Почему молния бьет в человека или в дерево? На самом деле ей все равно, куда бить. Ведь молния ищет наиболее короткий путь между землей и небом. Именно поэтому во время грозы опасно находиться на равнине или на поверхности воды.
Когда лидер достигает земли, по проложенному каналу начинает течь ток. Именно в этот момент и наблюдается основная вспышка молнии, сопровождаемая резким ростом силы тока и выделением энергии. Здесь уместен вопрос, откуда идет молния? Интересно, что лидер распространяется от тучи к земле, а вот обратная яркая вспышка, которую мы и привыкли наблюдать, распространяется от земли к туче. Правильнее говорить, что молния идет не от неба к земле, а происходит между ними.
Почему молния гремит?
Гром возникает в результате ударной волны, порождаемой быстрым расширением ионизированных каналов. Почему сначала мы видим молнию а потом слышим гром? Все дело в разности скоростей звука (340,29 м/с) и света (299 792 458 м/с). Посчитав секунды между громом и молнией и умножив их на скорость звука, можно узнать, на каком расстоянии от Вас ударила молния.
Нужна работа по физике атмосферы? Для наших читателей сейчас действует скидка 10% на любой вид работы
Виды молний и факты о молниях
Молния между небом и землей – не самая распространенная молния. Чаще всего молнии возникают между облаками и не несут угрозы. Помимо наземных и внутриоблачных молний, существуют молнии, образующиеся в верхних слоях атмосферы. Какие есть разновидности молний в природе?
Последние три вида молний невозможно наблюдать без специальных приборов, так как они образуются на высоте от 40 километров и выше.
Приведем факты о молниях:
Шаровая молния
Напоследок предлагаем Вам посмотреть видео и напоминаем: если курсовая или контрольная свалилась на голову как молния в солнечный день, не нужно отчаиваться. Специалиста студенческого сервиса выручают студентов с 2000 года. Обращайтесь за квалифицированной помощью в любое время. 24 часа в сутки, 7 дней в неделю мы готовы помочь вам.
Комплекс отрицательно воздействующих явлений и процессов в системе «человек – среда обитания».
Опасное природное явление геологического, гидрологического, атмосферного и др. происхождения, вызывающие чрезвычайные ситуации, связанные с нарушением жизнедеятельности людей, поражением и уничтожением материальных ценностей, а также приводящее к человеческим жертвам называется:
1. экологическим кризисом;
2. стихийным бедствием;
3. глобальным потеплением;
ТЗ 3. (один из четырех – 1).
1. область научных знаний, изучающая опасности и способы защиты от них человека в любых условиях его обитания;
2. состояние защищенности национальных интересов;
3. этапы развития человека;
4. расширение техносферы цивилизации.
Система знаний, направленная на обеспечение безопасности в производственной и непроизводственной средах, называется:
1. техникой безопасности;
2. безопасностью жизнедеятельности;
1. защита человека и среды его обитания от негативных воздействий, достижение комфортных условий жизнедеятельности;
2. исследование причин аварий и катастроф на промышленных предприятиях;
3. предостережение людей от необдуманных действий, которые могут привести к негативным последствиям;
4. моделирование вариантов последствий стихийных бедствий.
Опасные природные явления или процессы различного происхождения, которые вызывают катастрофические ситуации, характеризующиеся гибелью людей и животных называется:
1. стихийными бедствиями;
3. чрезвычайными ситуациями;
4. чрезвычайными происшествиями.
ТЗ 7. (три из четырех- 1, 2, 3).
Землетрясения происходят в виде толчков, которые включают в себя:
1. форшоки;
2. главный толчок;
3. афтершоки;
ТЗ 8. (один из четырех).
Некоторый объем в толще Земли, в пределах которого при землетрясениях происходит высвобождение энергии.
1. очаг землетрясения;
2. слой землетрясения;
3. вершок землетрясения;
4. точка землетрясения.
ТЗ 9. (два из четырех – 2, 4).
Центр очага землетрясения называется:
1. условной точкой землетрясения;
2. гипоцентром;
Фокусом землетрясения.
Проекция гипоцентра землетрясения на поверхность Земли называется:
1. эпицентром;
Вокруг эпицентра землетрясения происходят наибольшие разрушения. Эта область называется:
1. плейтосейстовой;
4. нет правильного ответа.
ТЗ 12. (два из четырех – 1, 2).
Сейсмологи используют магнитудные шкалы землетрясений:
1. Рихтера;
2. Меркалли;
Сила землетрясений в 0-1 балл по шкале Рихтера человеком:
1. не ощущается;
2. ощущается вне помещений, наблюдается появление ряби на поверхности воды;
3. наблюдается в появлении трещин на земле и в зданиях;
4. ощущается на верхних этажах зданий.
Разрушение зданий начинается при интенсивности землетрясений (по шкале Рихтера) в:
2. 6 баллов;
ТЗ 15. (два из четырех – 1, 2).
Два главных сейсмических пояса:
1. среднеземноморско-Азиатский;
2. тихоокеанский;
«Предвестники» землетрясения, слабые предварительные толчки:
1. форшоки;
ТЗ 17. (три из четырех – 1, 2, 3).
На территории России к сейсмоопасным районам относятся:
1. Камчатка;
2. Кавказ;
3. Сахалин;
ТЗ 18. (три из четырех – 1, 2, 3).
Вулканы делятся на:
1. действующие;
2. уснувшие;
3. потухшие;
Временное затопление значительной части суши водой в результате действий сил природы:
1. наводнение;
Заносы, образующиеся в результате обильных снегопадов и сильных метелей, которые приводят к остановке движения на автомобильных и железных дорогах:
1. снежные;
ТЗ 21. (два из четырех – 1, 2).
Причины, вызывающие оползни:
1. увеличение крутизны склона в результате подмыва водой;
2. ослабление прочности пород при выветривании или переувлажнении осадками и подземными водами;
Стихийное бедствие, классифицируемое набичеподобные, расплывчатые, составные, огненные:
1. смерчи;
ТЗ 23. (два из четырех – 1, 3).
Главные задачи БЖД:
1. анализ источников и причин возникновения опасностей;
2. оказание гуманитарной помощи пострадавшим от стихийных бедствий;
3. прогнозирование и оценка воздействия опасных явлений в пространстве и во времени;
4. предотвращение опасных природных явлений.
БЖД как система – это:
1. состояние деятельности человека, при котором с определенной вероятностью исключаются потенциальные опасности, влияющие на жизнь и здоровье человека;
2. комплекс знаний, направленных на обеспечение безопасности и сохранение здоровья человека в производственной и непроизводственной средах с учетом влияния человека на среду обитания;
3. совокупность организационных структур и технических средств, предназначенных для защиты человека и окружающей среды от негативных воздействий;
4. наука о комфортном и травмобезопасном взаимодействии человека со средой обитания.
ТЗ 25. (три из четырех – 1, 2, 4).
1. обильные осадки;
2. сильные ветра на берегах морей;
3. извержения вулканов, находящихся вблизи морского побережья
Интенсивное таяние снега
ТЗ 26. (три из четырех – 1, 2, 4).
Пожары подразделяются по характеру на:
1. низовые;
2. верховые;
Подземные.
ТЗ 27. (три из четырех – 1, 2, 4).
К ландшафтным (растительным) пожарам относят:
1. лесные;
2. степные;
Болотные.
Молнию характеризуют как:
1. гигантский электрический искровой разряд в атмосфере;
2. передачу энергии в виде электромагнитных колебаний различной частоты;
3. поток элементарных частиц;
Единицыоценивания интенсивности землетрясений:
1. баллы;
Шкала оценивания силы ветра:
1. Бофорта;
3. смерч;
Смещение масс горных пород по склону под воздействием собственного веса или подмыва склона:
1. оползень;
Виды воздействий на биосферу относящиеся к космическим опасностям:
1. видимый свет, инфракрасные лучи;
2. радиоизлучение, коротковолновое излучение;
3. рентгеновское излучение;
4. все названные виды излучений.
Что НЕ является причиной наводнения:
1. обильные осадки, интенсивное таяние льда;
2. сильные ветры, которые задерживают воду в устье реки;
3. подводные землетрясения;
Строительство большого корабля на воде.
ТЗ 35. (два из четырех – 1, 4).
Типы сейсмических волн:
1. сжатия и сдвига;
2. перемещения и сжатия;
3. сдвига и перемещения;
Поперечные и продольные.
Прибордля обнаружения и регистрации всех типов сейсмических волн:
3. сейсмограф;
1. интенсивные и продолжительные дожди;
2. быстрое таяние снега;
3. таяние ледников в горах;
Все перечисленное.
ТЗ 38. (один из четырех –4).
Нитеобразных.
Вид пожара, во время которого огонь распространяется только по почвенному покрову, охватывая нижние части деревьев, траву:
Низовой.
Не относится к стихийным бедствиям:
Озоновые дыры.
1. разновидность тропического циклона, которая типична для северо-западной части Тихого океана;
2. сильное затопление части суши в Южной Америке;
3. продолжительные ливни;
4. туман, опускающийся вследствие обильных продолжительных осадков.
Примерная скорость верхового пожара по кронам деревьев:
3. 15-20км/ч;
Определение, соответствующее понятию «лава»:
1. излившаяся магма;
3. газ при извержении;
4. осадочная порода.
Определение, соответствующее понятию «сель»:
1. временно сформировавшийся поток воды с большим содержанием камней, песка и других материалов;
2. смещение земляных масс под воздействием собственного веса;
3. затопление части суши водой с преобладанием в ней песка, камней и других материалов;
4. поток воды с гор.
1. 32 м/с;
Стихийное бедствие, занимающее на территории России первое место по повторяемости, площади распространения и материальному ущербу:
1. наводнения;
2. извержения вулканов;
В России деятельность вулканов характерна для районов:
Виды молний
В продолжение поста Молнии и их следы сегодня напишу про виды молний.
Молния – это огромных размеров электрический разряд, который всегда сопровождается вспышкой и громовыми раскатами (в атмосфере чётко просматривается сияющий канал разряда, напоминающий ветви дерева). При этом вспышка молнии почти никогда не бывает одна, за ней обычно следует две, три, иногда доходит и до нескольких десятков. Эти разряды почти всегда образуются в кучево-дождевых облаках, иногда – в слоисто-дождевых тучах больших размеров: верхняя граница нередко достигает семи километров над поверхностью планеты, тогда как нижняя часть может почти касаться земли, пребывая не выше пятисот метров.
О природе возникновения молний:
Состоит грозовая туча из большого количества пара, сконденсированного в виде льдинок (на высоте, превышающей три километра это практически всегда ледяные кристаллы, поскольку температурные показатели здесь не поднимаются выше нуля). Перед тем как туча становится грозовой, внутри неё начинают активное движение ледяные кристаллы, при этом двигаться им помогают восходящие с нагретой поверхности потоки тёплого воздуха. Воздушные массы увлекают за собой вверх более мелкие льдинки, которые во время движения постоянно наталкиваются на более крупные кристаллы. В результате кристаллики меньших размеров оказываются заряженными положительно, более крупные – отрицательно. После того как маленькие ледяные кристаллики собираются наверху, а большие – снизу, верхняя часть облака оказывается положительно заряженной, нижняя – отрицательно. Таким образом, напряжённость электрического поля в туче достигает чрезвычайно высоких показателей: миллион вольт на один метр. Когда эти противоположно заряженные области сталкиваются друг с другом, в местах соприкосновения ионы и электроны образовывают канал, по которому вниз устремляются все заряженные элементы и образуется электрический разряд – молния. В это время выделяется настолько мощная энергия, что её силы вполне хватило бы на то, чтобы на протяжении 90 дней питать лампочку мощностью в 100 Вт.
1. Линейная молния (туча-земля)
В результате распределения электронов в облаке, обычно позитивно заряжен верх облака, а негативно — низ. В результате получаем очень мощный «конденсатор», который может время от времени разряжаться в результате скачкообразного преобразования обычного воздуха в плазму (это происходит из-за все более сильной ионизации атмосферных слоев, близких к грозовым тучам). Кстати, температура воздуха в месте прохождения заряда (молнии) достигает 30 тысяч градусов, а скорость распространения молнии около 150 километров в секунду.
2. Молния «земля-облако»
Образуются они в результате накапливающегося электростатического заряда на вершине самого высокого объекта на земле, что делает его весьма «привлекательным» для молнии. Такие молнии образуются в результате «пробивания» воздушной прослойки между вершиной заряженного объекта и нижней частью грозовой тучи.
3. Молния «облако-облако»
Поскольку верхняя часть облака заряжена позитивно, а нижняя — негативно, рядом стоящие грозовые облака могут простреливать электрическими зарядами друг друга.
4. Горизонтальная молния
Эта молния не бьет в землю, она распространяется в горизонтальной плоскости по небу. Иногда такая молния может распространяться по чистому небу, исходя от одной грозовой тучи. Такие молнии очень мощные и очень опасные.
5. Ленточная молния
Ленточная молния — несколько одинаковых зигзагообразных разрядов от облаков к земле, параллельно смещённых относительно друг друга с небольшими промежутками или без них.
6. Четочная (пунктирная молния)
Время существования четочной молнии 1–2 секунды. Примечательно, что траектория четочной молнии нередко имеет волнообразный характер. В отличие от линейной молнии след четочной молнии не ветвится — это является отличительной особенностью этого вида.
Шторовая молния выглядит как широкая вертикальная полоса света, сопровождающаяся низким негромким гулом.
До сих пор речь шла только о том, что случается ниже облаков, или на их уровне. Но оказывается, что некоторые виды молний бывают и выше облаков. О них было известно со времени появления реактивной авиации, но вот сфотографированы и сняты на видео эти молнии были только в 1994 году.
8. Спрайты — некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало.
9. Эльфы. Представляют собой огромные, но слабосветящиеся вспышки-конусы диаметром около 400 км, которые появляются непосредственно из верхней части грозового облака. Высота эльфов может достигать 100 км, длительность вспышек — до 5 мс (в среднем 3 мс)
10. Джеты. Представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), живут джеты относительно дольше эльфов.
11. Вулканические молнии
По одному из многочисленных предположений ученых вулканические молнии возникают вследствие того, что пузыри магмы, выбрасываемые вверх, либо вулканический пепел несут электрический заряд, и при их движении возникают разделенные области. Кроме этого, выдвигается предположение, что вулканические молнии могут быть вызваны наводящими заряд столкновениями в вулканической пыли.
12. Огни Святого Эльма. Это, в принципе, и не молнии, а разряд в форме светящихся пучков или кисточек (или коронный разряд), возникающий на острых концах высоких предметов (башни, мачты, одиноко стоящие деревья, острые вершины скал и т. п.) при большой напряжённости электрического поля в атмосфере. Они образуются в моменты, когда напряжённость электрического поля в атмосфере у острия достигает величины порядка 500 В/м и выше, что чаще всего бывает во время грозы или при её приближении, и зимой во время метелей.
13. Под номером тринадцадь конечно же, самые загадочные молнии. Шаровые.
Шаровая молния — светящийся плавающий в воздухе плазменный шар, уникально редкое природное явление. Единой физической теории возникновения и протекания этого явления к настоящему времени не представлено.
На этом все, спасибо, что дочитали до конца. Прошу не судить строго, так как я не физик и ищу информацию в открытых источниках. В следующий раз напишу о людях, переживших встречу с молнией или погибших от нее.
В 15 лет наблюдала такое явление. Сидела возле окна летним вечером. Уже стемнело и во дворе зажглись фонари на улице. Увидела яркий шар. Он святился и поднимался вверх. На расстоянии примерно 30-40 метров от земли он взорвался, при этом наблюдалась яркая вспышка света. Все это явление длилось примерно 3-4 секунды. От вспышки погасли фонари и стало совсем темно. Потом фонари конечно зажглись один за другим. Старшая сестра услышав подозрительный звук прибежала в ту комнату где была я. Она до сих пор жалеет, что её не было со мной в комнате и она ничего не видела.
С удовольствием прочитал! Всегда обожал наблюдать раскаты молний)
К слову, очень злит количество фейковых видео с шаровой молнией, из-за простой концепции эти видео легко подделать. Я знаю только один оригинальный снимок к которому нет претензий, спектр шаровой молнии от китайцев. если ещё есть видео к которым нет сомнений, интересно увидеть.
Что за бред про льдинки? Молнии Зевс метает!
«В это время выделяется настолько мощная энергия, что её силы вполне хватило бы на то, чтобы на протяжении 90 дней питать лампочку мощностью в 100 Вт.» Сравнение какое то слабое, я понимаю, если «её силы хватит, чтобы питать город с населением 100000 человек 90 дней!»
@kybo3, а почему ученые твёрдо не уверенны в существовании шаровых молний, если есть множество доказательств их появлений (видео/фото, очевидцы, прочее)?
Мы с братом были очевидцами шаровой молнии в г. Шелехов (р-н Кабельного завода), молния двигалась вдоль дороги по полю, погода была пасмурной. Мы оцепенели и стоя провожали глазами эту молнию, пока она не скрылась за перелеском.
P.S. в точку назначения поехали обратным путем, ибо очканули.
Ого, оказывается я много чего не зал о молниях и их видах) Спасибо за пост?
В результате кристаллики меньших размеров оказываются заряженными положительно, более крупные – отрицательно.
Статья супер, спасибо!
Может, кто-нибудь подскажет какие-нибудь годные видео на предмет исследований шаровых молний? Только не РЕН-ТВ и иже с ними, а научные. Очень интересна эта тема.
вот интересно всегда было,почему когда очень сильная гроза молнии имеют розовый оттенок?
Вот я тоже уверенна, что видела шаровую молнию. Но в реальной жизни стараюсь об этом не рассказывать, тк начинают приставать, да это блик был и тд, и все прям такие эксперты, законы поведения молний знают сразу.
А я была в комнате не входящей на дорогу, гроза, форточку открыта. Привлёк внимание яркий но не оформленный пучок света, от жути я и дышать не могла, пучок поплыл от окна по потолку и погас. От ужаса казалось минут 15.
Хотя, когда родственников спрашиваешь, сколько длился приступ потери сознания у пациента, те часто отвечают до получаса, а по факту и минуты не будет
Если молния потому что заряд между верхом и низом тучи, то зачем она в землю бьёт? Пробой же между пластинами должен быть.
Когда провинился перед Зевсом, зонтик не поможет.
Гроза над озером
Canon 5D MarkIV 20mm ( EF 16-35 )
30s f13 iso100
Дерево горит изнутри после удара молнии
За минуту до стихии
Пришельцы десантируются
Случайно сфоткала сегодня. Мацеста, Сочи
Гроза на Путоранах
Центральная часть озера Собачьего (Ыт-Кюёль) в западной части плато Путорана. Снято в конце июля 2021.
Фотоаппарат Panasonic Lumix DC-S1 + объектив Panasonic Lumix S Pro 16-35mm f/4 + фильтр Benro ND64. ФР 16 мм, f/9, 30 с, ISO-100.
Гроза в Санье, Китай, август 2020г
Гроза в Удмуртии 24.08.21
Перед началом ливня успел снять немного молний:
Снимал на Canon 6d, объектив Canon 24-105
f/4
Гнев небес
Редкие ставропольские грозы
Две истории про шаровые молнии
Первая — из глухой деревни Новгородского района, откуда моя семья по отцу.
Примерно 1964 год, отцу 10 лет. Лето, духота, «сухая» гроза. Бабушка с сыновьями сидят за столом в деревенском доме, а в открытое окно влетает шаровая молния, размером с два тогдашних папиных кулака. Вся семья замерла и молча наблюдала, как жужжа, словно рой ос, шар по совершенно ровной траектории пролетел мимо них и ударил в печь. От печи с жутким грохотом отлетело несколько кирпичей, несколько кусков улетели на стол, людей не задело. Спустя какое-то время дед предположил, что было целью молнии: дальше, по её траектории, был электросчётчик. И ведь до него молния не долетела — но от счётчика мало что осталось: взорвался.
Но вернёмся к событиям того момента! То ли молния была не одна, то ли напряжение пошло по проводам, не успели бабушка с детьми проморгаться и прочихаться от грохота и пыли, как услышали жуткий крик со двора. Все, понятно, бегом туда.
С сеновала над хлевом спускается оглушённый дед, ничего не соображает, только и вопросов, что это было? А у хлева выбито-выжжено наполовину одно из брёвен. А внутри лежит кабанчик, наполовину синий и не шевелится. Дед посмотрел — и тут же его забил, сказал, не жилец.
Пожара не было. Печку восстановили, стену хлева тоже. Счётчик заменили. Дед жил ещё несколько лет, пока не поехал зимой на тракторе на озеро за льдом, но это совсем другая история.
Фотографировали тогда мало. Я нашла фото дома, и маленького отца на его фоне, и фото отца примерно времён истории с молнией, и скормила всё нейросетям.
Про трещины на фото знаю, но этим надо заниматься серьёзно и вдумчиво. И руками. Автоматические штуки «съедают» папину родинку 🙂
Со второй байкой интереснее, это мои воспоминания раннего детства, как живые картинки в голове. В единую картину они у меня состыковались сильно позже. Мы тогда семьёй отдыхали на юге, мне 6 лет.
Первая картинка — напряжённое небо, тёмные тучи прямо давят. Папа с мамой быстро, почти бегом идут по асфальтированной улочке вдоль небольших частных домов, молча, папа тяжело дышит и несёт меня на руках, так, что я смотрю ему за спину. Мы заходим под большое дерево с узкими листьями. А метрах в 20-30 за нами примерно с нашей скоростью, на высоте немногим больше метра совершенно неслышно скользит в воздухе шар, очень красивый, но при виде него мне хочется перестать дышать. Шар поворачивает в сторону домов, картинка тает.
Следующая картинка — то же место спустя какое-то время. Я стою перед затянутой сеткой калиткой дома, куда повернул шар. В сетке на высоте полёта шара — ровное оплавленное отверстие.
Написала всё это и задумалась. А потом подумала: а почему не спросить свидетелей?
И позвонила отцу. А он возьми и подтверди обе истории: добавил больше подробностей к первой, немного посмеялся над второй.
— Нет, дочка, это ты не придумала, это реально было, мы убегали с пляжа перед грозой, в Геленджике. А молния летела не за нами — у неё своя, прямая траектория была в эту калитку, она движения не меняла. Мы тогда на море были, когда началась гроза. И с неба, и с гор в море пошёл такой поток воды, что я просто испугался за вас! Схватил всех, и мы побежали домой. И правильно сделали, мостик, по которому мы переходили, тем вечером снесло. Молния была в перерыве между дождями. Но я не очень её рассматривал — мне надо было вас до дома дотащить.















































