Как выполняли счет первобытные люди
Как вели счет в древности
Счет у первобытных людей
В прошлые времена было много способов счета. Искусство счета развивалось с развитием человечества. В те времена, когда человек лишь собирал в лесу плоды и охотился, ему для счета хватало руки. Пальцы всегда при нас.
Рука человека – первая «счетная машина». Мальчик выгонял стадо, загибал пальцы, а когда загонял коз, то опять пересчитывал по пальцам и сравнивал, все ли пальцы он загнул. Пальцы были первыми условными знаками обозначения чисел. Так родилась идея использовать пальцы для обозначения чисел. Когда пальцы на одной руке кончались, переходили на другую, а если на двух руках не хватало, переходили на ноги. Поэтому, если в те времена кто-то хвалился, что у него «две руки и одна нога кур», это означало, что у него пятнадцать кур, а если это называлось «весь человек», то есть две руки и две ноги, это означало двадцать.
Когда в пересчете участвовало много животных, то пальцы кончались, и возник вопрос, как обозначить десятки. Тогда обратились к зарубкам, камешкам.
В древние времена, когда человек хотел показать, сколькими животными он владел, он клал в большой мешок столько камешков, сколько у него было животных. Чем больше животных, тем больше камешков. Отсюда и произошло слово «калькулятор», «калькулюс» по-латински означает «камень»!
Считая коз, пастушка сосчитав все пальчики на руках, отложила один камешек в сторонку, после этого продолжила считать по рукам. С каждым десятком она откладывала камешек, когда стадо вышло из загона, то на земле лежало 4 камешка и загнутыми оказались восемь пальчиков. Таким образом, она выгнала на пастбище 48 коз.
Когда Робинзон Крузо в книге писателя Дефо остался на необитаемом острове, он вел своеобразный календарь. Для этого он на врытом в землю столбе каждый день делал короткую зарубку, а через каждые 30 дней делал зарубку длиннее. Так Робинзон считал дни и месяцы, проведенные на острове.
В России сохранилось выражение: «Заруби себе на носу». Оно говорит о том, что для запоминания чего-либо важного следует сделать зарубку. Слово «нос» в данном случае произведено от слова «носить». В старые времена многие люди носили при себе для зарубок небольшие палочки. Называли их «нос», а чтобы запомнить нужное число, делали на «носу» соответствующее число зарубок – меток.
Перуанские инки вели счет животных и урожая, завязывая узелки на ремешках или шнурках разной длины и цвета. Эти узелки назывались кипу. У некоторых богатеев скапливалось по несколько метров этой веревочной «счетной книги», попробуй, вспомни через год, что означают 4 узелочка на шнурочке! Поэтому того, кто завязывал узелки, называли вспоминателем
Веревочные счеты с узелками были в ходу в России, а также во многих странах Европы. До сих пор иногда завязывают узелки на носовых платках на память
Цифры древних цивилизаций
Нумерация древних шумеров
Первыми придумали запись чисел древние шумеры. Они пользовались всего двумя цифрами. Вертикальная черточка обозначала одну единицу, а угол из двух лежачих черточек – десять. Эти черточки у них получались в виде клиньев, потому что они писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали.
Какой была система исчисления в племени майя?
Древний народ майя вместо самих цифр рисовал страшные головы, как у пришельцев, и отличить одну голову – цифру от другой было очень сложно.
В начале нашей эры индейцы племени майя, которые жили на полуострове Юкатан в Центральной Америке, пользовались другой системой счисления – двадцатеричной. Они обозначали 1 точкой, а 5 – горизонтальной чертой, например, запись == означала 14. В системе счисления майя был и знак для нуля. По своей форме он напоминал полузакрытый глаз.
Интересно, что разные народы, жившие в отдаленных друг от друга странах и в разные времена, изобретали для записи чисел собственные, но всё же чем-то сходные с другими способами записи чисел.
Какими были египетские цифры?
Египтяне писали иероглифами, то есть использовали рисунки для отображения какой – либо идеи или объекта. Эти рисунки изображали элементы флоры и фауны реки Нил и домашнюю утварь. Цифры они также писали иероглифами. У египтян были знаки для обозначения чисел от 1 до 10.
В древней египетской нумерации, зародившейся более 5000 лет назад, существовали особые знаки для записи чисел 1, 10, 100, 1000, … и специальный иероглиф для обозначения десятков, сотен тысяч, десятков тысяч, сотен тысяч, миллионов и десятков миллионов. Как писать, так и считать тогда умели только специально обученные люди, для простых людей счет был так же недоступен, как и письменность. Эта система применялась в Древнем Египте при торговле и сборе податей, особенно распространившись при постройке Великих Пирамид, и постепенно угасла вместе с кастой строителей и счетоводов, при упадке Египта.
Вавилонские клинышки
Древняя Греция и Русь
Раз, два, три, четыре, пять. Как человек научился считать?
Возникновение счета в первобытном мире.
(продолжение. начало тут )
Итак, человек научился считать. Но этого было мало. Нужно было еще и запоминать числа – например, чтобы знать численность скота или количество зерна в амбаре. Человек использует для этого зарубки на кости или на дереве или узелки на веревке (кипу). Он уж не просто считает, он сохраняет результат счета! И по сути своей эти зарубки и узелочки уже есть прообраз записанного числа.
Запись числа – это новый этап в развитии культуры человека. Записанное число неумолимо влечет за собой изобретение системы исчисления, возможность оперировать очень большими числами и в результате приводит к элементарной арифметике. Ведь система исчисления уже заключает в себе принципы сложения и умножения. Чтобы выразить число 15, надо к десяти прибавить пять, а чтобы получить число 20 – надо к десяти прибавить десять (т.е. взять десять два раза, иначе говоря, умножить).
Дальнейшее развитие этой элементарной арифметики происходит вместе с экономическим развитием жизни, с развитием торговли, с возникновением первых государств.
А как насчет геометрии?Её зачатки появились тоже в первобытную эпоху? Именно так!
Потребность измерить длину или емкость предметов возникла у человека наряду с потребностью счета – во времена неолита. И опять на помощь пришло человеческое тело – до наших дней дошли такие единицы измерения как «палец», «локоть», «фут» (ступня). В это же время появляются и первые геометрические понятия. При строительстве домов человек старается использовать прямые линии и прямые углы, используя для разметки веревку. Развитию чувства геометрической формы также способствовало гончарное ремесло, плетение корзин, а позже – обработка металла. На домашней утвари появляются орнаменты, вероятно, имеющие первоначально магическое значение – из этих орнаментов можно заключить, что первобытный человек имел интуитивное представление о равенстве фигур, их подобии и симметрии. Также представлению о геометрических понятиях – углах, сферах, окружностях – способствовали астрономические наблюдения первобытных народов.
Геометрические орнаменты с кухонной утвари эпохи неолита
Итак, мы видим, что человек уже на ранних этапах своей культуры умел считать и сохранить результаты счета, производил над числами арифметические действия, а также имел понятие о геометрических формах.
А завтра посмотрим, как развивались математические знания дальше – в странах Древнего Востока.
Зарождение счета в глубокой древности
Оглавление
Глава I. Возникновение числа. 2
1.1. Зарождение счета в глубокой древности. 2
1.2. Пальцевой счёт. 4
1.3. Появление систем счисления. 6
1.4. Письменная нумерация у древних народов. 9
Глава II. От натуральных чисел к комплексным. 18
2.1. Натуральные числа. 18
2.2. Дробные числа. 20
2.3. Рациональные числа. 26
Глава I. Возникновение числа
Зарождение счета в глубокой древности
Наши первоначальные представления о числе и форме относятся к очень отдаленной эпохе древнего каменного века – палеолита. В течении сотен тысячелетий этого периода люди жили в пещерах, в условиях, мало отличавшихся от жизни животных, и их энергия уходила преимущественно на добывание пищи простейшим способом – собиранием её, где только это было возможно. Люди изготовляли орудия охоты и рыболовства, вырабатывали язык для общения друг с другом, а в эпоху позднего палеолита украшали своё существование, создавая произведения искусства, статуэтки и рисунки.
Пока не произошёл переход от простого собирания пищи к активному её производству, от охоты и рыболовства к земледелию, люди мало продвинулись в понимании числовых величин и пространственных отношений. Лишь с наступлением этого фундаментального перелома, переворота, когда пассивное отношение человека к природе сменилось активным, мы вступаем в новый каменный век, в неолит.
Самым трудным этапом, который прошло человечество при выработке понятия о числе, считается выделение им понятия единицы из понятия «много». Оно произошло, по всей вероятности, ещё тогда, когда человечество находилось на низшей ступени развития. В.В. Бобынин объясняет такое выделение тем, что человек обычно захватывает рукой один предмет, а это, по его мнению, и выделило единицу из множества. Таким образом, начало счисление Бобынин мыслит как создание системы, состоящей из двух представлений: единица и неопределенное множество. [1].
Так, например, племя ботокудов, жившее в Бразилии, выражало числа только словами «один» и «много». Появление элемента «два» объясняется выявлением возможности взять по одному предмету в каждую руку. На первоначальном этапе счёта человек связывал это понятие с понятием обеих рук, в которых находится по одному предмету в каждой. При выражении понятия «три» встретилось затруднение: у человека нет третьей руки; это затруднение было преодолено, когда человек догадался помещать третий предмет у своих ног. Таким образом, «три» характеризовалось поднятием обеих рук и указанием на ноги. Отсюда сравнительно характерно произошло выделение и понятие «четыре», так как с одной стороны, к этому побуждало сопоставление двух рук и двух ног, а с другой – возможность поместить по одному предмету у каждой ноги. На первой ступени развития счета человек еще отнюдь не пользовался наименованием чисел, а выражал их или у ног, или соответствующими телодвижениями или жестами.
Дальнейшее развитие счета относится, вероятно, к той эпохе, когда человечество ознакомилось с некоторыми формами производства – охотой и рыболовством. Человеку пришлось изготавливать простейшие орудия для овладения этими производствами. Кроме того, продвижение человека в холодные страны заставило его делать одежду и создавать орудия для обработки кожи.
Мало-помалу сложилось первобытно-коммунистическое общество с соответствующим распределением пищи, одежды и орудия. Все эти обстоятельства вынудили человека так или иначе вести счет общего имущества, сил врага, с которым приходилось вступать в борьбу за овладение новыми территориями. Процесс счета уже не мог остановиться на четырех и должен был развиваться далее и далее.
На этой ступени развития человек уже отказывается от необходимости брать пересчитываемые предметы в руку или класть к ногам. В математику входит первая абстракция, заключающаяся в том, что пересчитываемые предметы заменяются какими-либо другими однородными между собой предметами или знаками: камешками, узелками, ветками, зарубками. Операция производится по принципу взаимно-однозначного соответствия: каждому пересчитываемому предмету в соответствие один из предметов, выбранных в качестве орудия счета (то есть один камешек, один узелок на веревке и т.д.). Следы такого рода счета сохранились у многих народов и до настоящего времени. Иногда такие примитивные орудия счета (камешки, раковины, косточки) нанизывали на шнурок или палочку, чтобы не растерять. Это впоследствии привело к созданию более совершенных счётных приборов, сохранивших своё значение и до наших дней: русские счёты и сходный с ними китайский суан-пан.
Пальцевой счёт.
Развитие счёта пошло значительно быстрее, когда человек догадался обратиться к самому близкому ему, самому естественному счётному аппарату – к своим пальцам. Быть может, первым актом счёта по пальцам было оказание предмета, указательным пальцем; тут палец сыграл роль единицы. Участие пальцев в счёте помогло человеку переступить за число четыре, так как когда все пальцы на одной руке стали считаться равноценными единицами, это сразу позволило довести счёт до пяти. Дальнейшее развитие счёта потребовало усложнения счётного аппарата, и человек нашёл выход, привлекая к счёту сначала пальцы второй руки, а затем распространяя свой приём на пальцы ног: для племён, не носивших обуви, использование пальцев ног было вполне естественным. При этом такое расширение счётных этапов, очевидно, произошло в следствии возможности привести в однозначное соответствие пальцы рук и ног, что и отмечается у некоторых народов.
Так, для выражения числа «двадцать» индейцы из Южной Америки противопоставляют пальцы на руках пальцам на ногах.
В описываемую эпоху хозяйственные расчёты людей ограничивались тем, что после распределения пищи и одежды, захваченных в результате стычки с врагом, уже не было потребности помнить числа, возникшие во время расчётов, а потому счёт и не нуждался в наименованиях для чисел, а производился главным образом путём соответствующих жестов.
Например, туземные жители Андоманских островов, расположенных в Бенгальском заливе Индийского океана, не имели слов для выражения чисел и при счете объяснялись теми или иными жестами. Отсюда видно, что жестикуляция при счете как пережиток еще надолго сохранилось у многих народов, которые не вырабатывали словесную нумерацию.
Словесный счет начал развиваться, лишь когда ведущей формой производства стало сельское хозяйство. В ту пору постепенно возникла частная собственность, объектами которой служили поля, огороды, стада. Обладатели полей, домашних животных, будучи крепко связанными с ними, вынуждены были не только считать принадлежащие им объекты, но и запоминать их число, а это и толкнуло человека путь создания именованных чисел. Сначала запоминание проводилось весьма громоздким и неуклюжим способом: путем восстановления в памяти внешних признаков запоминаемых предметов. Например, обладатель стада волов запоминал количество принадлежащих ему животных по тем признакам, что один вол серый, другой – черный и т.д. Разумеется такой способ запоминания не мог быть пригоден, когда число запоминаемых объектов было большим.
Следующей ступенью в развития наименования чисел надо признать появление описательных выражений совокупность нескольких единиц. Например, вместо наименования числа, выражающего два предмета, употреблялась фраза «столько, сколько у меня рук», наименование четыре передавалось фразой: «столько, сколько ног у животного». Итак, словесными выражениями нескольких предметов явилось преимущественно части тела человека и животного.
В дальнейшем эти описания выражения у многих народов заменились наименованием соответствующих слов, и таким образом эти наименования закрепились за числами. Так, число два стало выражаться словами, обозначающими «уши», «руки», «крылья», четыре – «нога страуса» (четырехпалая) и пр.
Например, у некоторых племен с островов Торресова пролива существуют только единица – «урапун» и двойка – «оказа». При помощи этоих чисел и происходит счет. На их языке три выражается, как «оказа урапун», четыре – «оказа оказа», пять – «оказа оказа урапун», шесть – «оказа оказа оказа» и т.д. Вот примеры счета некоторых австралийских племен: племя реки Муррей: 1 – «энэа», 2 – «петчевал», 3 – «петчевал энэа», четыре – «петчевал петчевал».
Проект » Как считали древние люди «
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Как считали древние люди? Подготовила: Кислякова Софья, ученица 5 Б класса Учитель математики: Мосунова О.А. В счете правда не теряется (Русская пословица)
Цель Выясниь, как люди научились считать.
Проблема Используют ли современные люди счет, которым пользовались наши предки?
Задачи Изучить литературу по данному вопросу Узнать историю возникновения современных цифр Что они использовали для счета. Изучить, как считали люди разных народов в древности.
Основные методы исследования: анализ литературы, сравнение, опрос учащихся, анализ и обобщение полученных в ходе исследования данных.
Гипотеза Я думаю, что нигде не используется в современном мире счет древних людей
План Обсуждение темы Поиск информации Проведение опроса учащихся Подведение итогов опроса Вывод
Первобытные люди Первыми понятиями математики были меньше, больше и столько же. Когда одно племя обменивало у другого свой улов рыбы на каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Просто клали рядом с каждой рыбой по ножу. Ещё недавно существовали племена, в языке которых были названия только двух чисел: один и два. Они считали так: 1 — «урапун» 2 — «окоза» 3 — «окоза-урапун» 4 — «окоза-окоза» 5 — «окоза-окоза-урапун» Все остальные числа назывались «много»!
Операции над числами Складывать и вычитать люди научились очень давно. Когда несколько групп собирателей кореньев или рыболовов складывали в одно место свою добычу, они осуществляли операцию сложения. С операцией умножения люди познакомились, когда стали сеять хлеб и увидели, что урожай в несколько раз больше, чем количество посеянного зерна. А когда мясо животных или орехи делили поровну, применялась операция деления.
Древняя Греция В середине 5 ст. до н. э. в Малой Азии появилась алфавитная нумерация. Числа обозначались при помощи букв алфавита, под которыми ставились чёрточки. Первые девять букв обозначали числа от 1 до 9, следущие девять — 10, 20. 90 и ещё девять — числа 100, 200…900. Так можно было обозначить любое число до 999.
Числа в древнем Риме В римской системе тоже есть специальные знаки: Число 444, например, записывается так: СDХLIV С помощью этой системы нельзя записать очень большие числа.
Шумерская клинопись Принёс крестьянин-шумер лук сборщику налогов. «Сум!» — сказал сборщик, потому что «сум» по-шумерски — «лук» — и нарисовал его на глиняной табличке, которую держал в руке. Шумеры много лет рисовали знаки рыб и птиц, домашних животных и растений. Их чертили тростниковой палочкой (стило) на табличке из сырой глины. Позже шумеры договорились, что будет обозначать каждый значок. Они избавились от плавных линий — просто вдавливали стило в глину и сразу отнимали. На глине оставались следы — клинопись.
Египет В Египте — одна из самых древних нумераций. Надписи египтян состояли из рисунков — иероглифов. Сохранились два математических папируса, по которым видно, как считали древние египтяне. Например, иероглиф для сотни рисовался как измерительная верёвка, для тысячи — как цветок лотоса, для 10 тысяч — поднятый вверх палец, 100 тысяч — как жаба, миллион — как человек с поднятыми руками.
В наше время мы записываем числа арабскими цифрами — они были заимствованы славянами в 13 веке. Раньше наши предки записывали числа при помощи букв славянской азбуки — кириллицы: буки, живете, ша и других. Над буквой ставили чёрточку — титло. Число 12, например, писали так: букву веди с титлом и букву и тоже с титлом. Получалось: два на десять. У больших чисел были свои названия: число 10 тысяч, а потом и миллион назвали тьма, миллион миллионов — легион, а легион легионов — леодр, леодр леодров называли ворон. В одной рукописи встретилось число большее, чем ворон. Оно называлось колода. Если записать его арабскими цифрами, то после 1 будет стоять 49 нолей! Славяне
Содержание Титульный лист Цель Проблема Задачи Методы исследования План Теория Обработка результатов исследования Информационные ресурсы Вывод
Информационные ресурсы http://www.p-shkola.by/ru/child_periodical/rukzachok?art_id=2012; http://nujen-sovet.ru/katalog/obuchenie-kak-schitali-v-starinu.php; Э. Александров, В. Левшин. В лабиринте чисел- М., 1991.г В. Волина. Праздник числа. Москва 1996 г. 3. В. Трутнев. Внеклассная работа по математике в начальной школе.- М..1975.
Вывод Изучая материал своей исследовательской работы, я выяснила. С древних времён жизни человек не мог обойтись без счёта. У каждого народа необходимость в простейших арифметических подсчётах возникла задолго до появления первых зачатков письменности, потому что постижение Мира во всем постоянно требовало количественной оценки знаний. Используя опыт ушедших поколений, первые великие мыслители своими открытиями закладывали фундамент древнейшей науки математики. На мой взгляд, это очень интересный предмет. Математика развивает логическое мышление, умение самостоятельно решать проблемы, способность быстро уловить суть и найти к жизненной задаче наиболее подходящий и простой подход»- говорят нам взрослые. Математика тесно связана с нашей повседневной жизнью. Математика встречается в нашей жизни практически на каждом шагу и не такая уж она серая и скучная, а разноцветная и веселая. Моя гипотеза о том, что нигде не используется в современном мире счет древних людей, частично подтвердилась, так как многие ребята при счете используют пальцы рук. Работать над темой мне понравилось.
Счет у первобытных людей
Запоминать большие числа было трудно, и поэтому кроме пальцев рук и ног «задействовались» другие «приспособления». Например, перуанцы использовали для этого разноцветные шнурки с завязанными на них узлами. Веревочные счеты с узелками были в ходу в России, а также во многих странах Европы. До сих пор иногда завязывают узелки на носовых платках на память.
На более высокой стадии развития люди при счете стали применять разные предметы: использовали камешки, зерна, веревку с бирками. Это были первые счетные приборы, которые, в конце концов, привели к образованию разных систем счисления и к созданию современных быстродействующих электронных вычислительных машин.
3. Цифры у разных народов
Мысль выражать все числа знаками
настолько проста, что именно из-за
этой простоты сложно осознать,
сколь она удивительна.
Пьер Симон Лаплас (1749-1827), франц. астроном, математик, физик.
3.1. Появление цифр
Сначала считали на пальцах. Когда пальцы на одной руке кончались, переходили на другую, а если на двух руках не хватало, переходили на ноги. Поэтому, если в те времена кто-то хвалился, что у него «две руки и одна нога кур», это означало, что у него пятнадцать кур, а если это называлось «весь человек», то есть две руки и две ноги.
Перуанские инки вели счет животных и урожая, завязывая узелки на ремешках или шнурках разной длины и цвета. Эти узелки назывались кипу. У некоторых богатеев скапливалось по несколько метров этой веревочной «счетной книги», попробуй, вспомни через год, что означают 4 узелочка на шнурочке! Поэтому того, кто завязывал узелки, называли вспоминателем.
Первыми придумали запись чисел древние шумеры. Они пользовались всего двумя цифрами. Вертикальная чёрточка обозначала одну единицу, а угол из двух лежачих чёрточек – десять. Эти чёрточки у них получались в виде клиньев, потому что они писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали. Вот так выглядели эти дощечки.
Так, например, в древней египетской нумерации, зародившейся более 5000 лет назад, существовали особые знаки (иероглифы) для записи чисел 1, 10, 100, 1000, …
Для того чтобы изобразить, например, целое число 23145, достаточно записать в ряд два иероглифа, изображающие десять тысяч, затем три иероглифа для тысячи, один – для ста, четыре – для десяти и пять иероглифов для единицы
Этого одного примера достаточно, чтобы научиться записывать числа так, как их изображали древние египтяне. Это система очень проста и примитивна.
В начале нашей эры индейцы племени майя, которые жили на полуострове Юкатан в Центральной Америке, пользовались другой системой счисления – двадцатеричной. Они обозначали 1 точкой, а 5 – горизонтальной чертой, например, запись ‗‗‗‗‗‗ означала 14. системе счисления майя был и знак для нуля. По своей форме он напоминал полузакрытый глаз.
В Древней Греции сначала числа 5, 10, 100, 1000, 10000 обозначали буквами Г, Н, Х, М, а число 1 – черточкой /. Из этих знаков составляли обозначения Г (35) и т.д. Позднее числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000 стали обозначать буквами греческого алфавита, к которому пришлось добавить еще три устаревшие буквы. Чтобы отличить цифры от букв, над буквами ставили черточку.
Древние индийцы изобрели для каждой цифры свой знак. Вот как они выглядели.
Они похожи на многие наши цифры. Слово «цифра» тоже досталось нам от арабов по наследству. Арабы нуль, или «пусто», называли «сифра». С тех пор и появилось слово «цифра». Правда, сейчас цифрами называются все десять значков для записи чисел, которыми мы пользуемся: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Постепенное превращение первоначальных цифр в наши современные цифры.
3.2. Римская нумерация
3.3. Цифры русского народа
Арабские числа в России стали применять, в основном, с XVIII века. До того наши предки использовали славянскую нумерацию. Над буквами ставились титлы (черточки), и тогда буквы обозначали числа.
Первые девять чисел записывались так:
Сотни миллионов назывались «колодами».
«
Числа от 11 до 19 обозначались так:
Остальные числа записывались буквами слева направо, например, числа 5044 или 1135 имели соответственно обозначение
При записи чисел больших, чем тысячи, в практической деятельности (счете, торговле и т.д.) часто вместо кружков ставили знаки «; Л» перед буквами, обозначавшими десятки и сотни тысяч, например, запись
означает соответственно 500044 и 540004.
Сколько километров проходит человек за свою жизнь, сколько товаров производится и приходит в негодность ежечасно в пределах города, страны? Сколько времени заняло бы выполнение самым быстрым расчетчиком миллиона вычислительных операций, которые современная вычислительная машина выполняет за. секунду? Во сколько раз скорость пассажирского реактивного самолета превосходит скорость тренированного спортсмена-пешехода? Ответы на эти и тысячи подобных вопросов выражаются числами, занимающими зачастую по числу своих десятичных разрядов целую строку и даже больше.
Для сокращения записи больших чисел давно используется система величин, в которой каждая из последующих в тысячу раз больше предыдущей:
1000 секстиллионов- 1 септиллион
1000 нониллионов- 1 дециллион
Таким образом, 1 дециллион запишется в десятичной системе единицей с 3 х 11=33 нулями:
1 000 000 000 000 000 000 000 000 000 000 000.
Как писал Самуил Яковлевич Маршак: «Напрасно думают, что ноль играет маленькую роль».
При записи больших чисел часто используют степень числа 10.
Заметьте, что число нулей степени 10 всегда равно ее показателю:
10 1 = 10, 10 2 = 100, 10 3 = 1000 и т.д.
И еще одно: математики во всем мире давно приняли, что любое число в нулевой степени равно единице (а 0 = 1).
Числа-символы
0 – абсолют, 1 – его проявление. Все это заключено в Солнце.
2 – двойственность и эмоциональность с ней связанная – свойства Луны.
3 – прошлое, настоящее и будущее время – Сатурн.
4 – четыре стороны света, пространство – Юпитер.
5 – любовь и человек – Венера.
6 – соединение двух треугольников – корень активности, отношений, а также преданность – свойства Марса.
7 – полнота знаний, деталей, особенностей, подвижность – это качества Меркурия.
8 – бесконечность, лунные узлы как точки затмений, во время которых временное соотносится с Вечным.














