Как выглядит прямоугольная система координат

Прямоугольная система координат на плоскости и в пространстве

При введении системы координат на плоскости или в трехмерном пространстве появляется уникальная возможность описания геометрических фигур и их свойств при помощи уравнений и неравенств. Это имеет иное название – методы алгебры.

Данная статья поможет разобраться с заданием прямоугольной декартовой системой координат и с определением координат точек. Более наглядное и подробное изображение имеется на графических иллюстрациях.

Прямоугольная декартова система координат на плоскости

Изображение прямоугольной системы координат на плоскости.

Оси абсцисс и ординат имеют одинаковую единицу изменения и масштаб, что показано в виде штрихе в начале координатных осей. Стандартное направление О х слева направо, а O y – снизу вверх. Иногда используется альтернативный поворот под необходимым углом.

Как выглядит прямоугольная система координат

Прямоугольная система координат получила название декартовой в честь ее первооткрывателя Рене Декарта. Часто можно встретить название как прямоугольная декартовая система координат.

Прямоугольная система координат в трехмерном пространстве

По направлению координатных осей делят на правую и левую прямоугольные системы координат трехмерного пространства.

Аналогично образуется левая система координат. Обе системы совместить невозможно, так как соответствующие оси не совпадут.

Как выглядит прямоугольная система координат

Координаты точки в декартовой системе координат на плоскости

Имеющееся число x M называют координатой точки М на заданной координатной прямой.

Как выглядит прямоугольная система координат

Как выглядит прямоугольная система координат

Координаты точки в прямоугольной системе координат в трехмерном пространстве

Как выглядит прямоугольная система координат

Как выглядит прямоугольная система координат

Источник

Прямоугольная система координат. Ось абсцисс и ординат

Как выглядит прямоугольная система координат

Прямоугольная декартова система координат

Французский математик Рене Декарт предложил вместо геометрических построений использовать математические расчеты. Так появился метод координат, о котором мы сейчас расскажем.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты школы тоже можно записать числами — они помогут понять, где именно находится наша школа. С точками на плоскости та же история.

Координатой можно назвать номер столика в кафе, широту и долготу на географической карте, положение точки на числовой оси и даже номер телефона друга. Проще говоря, когда мы обозначаем какой-то объект набором букв, чисел или других символов, тем самым мы задаем его координаты.

Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.

Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.

Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.

Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.

Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.

Единичные отрезки располагаются справа и слева от оси Oy, вверх и вниз от оси Oy. Числовые значения на оси Oy располагаются слева или справа, на оси Ox — внизу под ней. Чаще всего единичные отрезки двух осей соответствуют друг другу, но бывают задачи, где они не равны.

Оси координат делят плоскость на четыре угла — четыре координатные четверти.

У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:

Чтобы узнать координаты точки в прямоугольной системе координат, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра. Координаты записывают в скобках, первая по оси Ох, вторая по оси Оу.

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Координаты точки в декартовой системе координат

Для начала отложим точку М на координатной оси Ох. Любое действительное число xM равно единственной точке М, которая располагается на данной прямой. При этом начало отсчета координатных прямых всегда ноль.

Каждая точка М, которая расположена на Ох, равна действительному числу xM. Этим действительным числом и является ноль, если точка М расположена в начале координат, то есть на пересечении Оx и Оу. Если точка удалена в положительном направлении, то число длины отрезка положительно и наоборот.

Число xM — это координата точки М на заданной координатной прямой.

Как выглядит прямоугольная система координат

Пусть точка будет проекцией точки Mx на Ох, а My на Оу. Значит, через точку М можно провести перпендикулярные осям Оx и Оу прямые, после чего получим соответственные точки пересечения Mx и My.Тогда у точки Mx на оси Оx есть соответствующее число xM, а My на ОуyM. Как это выглядит на координатных осях:

Как выглядит прямоугольная система координат

Каждой точке М на заданной плоскости в прямоугольной декартовой системе координат соответствует пара чисел (xM, yM), которые называются ее координатами. Абсцисса М — это xM, ордината М — это yM.

Обратное утверждение тоже верно: каждая пара (xM, yM) имеет соответствующую точку на плоскости.

Источник

Прямоугольная система координат на плоскости и ее применение с примерами

Содержание:

Прямоугольная система координат на плоскости и ее применение к простейшим задачам

Прямоугольные координаты точки на плоскости

Координатами точки на плоскости называются числа, определяющие положение этой точки на плоскости.

Прямоугольные декартовы координаты (по имени математика Декарта) на плоскости вводятся следующим образом: на этой плоскости выбираются точка О (начало координат) и проходящие через нее взаимно перпендикулярные направленные прямые Ох и Оу (оси координат) (рис. 1). Для удобства рассмотрения будем предполагать, что ось Ох 0ось абсцисс) горизонтальна и направлена слева направо, а ось Оу (ось ординат) вертикальна и направлена снизу вверх; таким образом, ось О у повернута относительно оси Ох на угол 90° против хода часовой стрелки 1 ). Кроме того, выбирается единица масштаба для измерения расстояний.

Как выглядит прямоугольная система координат

Для данной точки М введем в рассмотрение два числа: абсциссу х и ординату у этой точки.

Абсциссой х называется число, выражающее в некотором масштабе расстояние от точки до оси ординат, взятое со знаком плюс, если точка лежит вправо от оси ординат, и со знаком минус, если точка лежит влево от оси ординат. Ординатой у называется число, выражающее в некотором масштабе (обыкновенно в том же, как и для абсциссы) расстояние от точки до оси абсцисс, взятое со знаком плюс, если точка лежит выше оси абсцисс, и со знаком минус, если точка лежит ниже оси абсцисс.

Эти два числа х и у и принимаются за координаты точки М, так как они полностью определяют положение точки на плоскости, а именно: каждой паре чисел х и у соответствует единственная точка, координатами которой являются эти числа; и обратно, каждая точка плоскости имеет определенные координаты х и у. Если точка М имеет координаты х и у, то это обстоятельство обозначают так: М (х, у) (на первом месте ставится абсцисса х, а на втором — ордината у). При записи координат знак плюс, как обычно, можно опускать.

Оси Ох и Оу разбивают плоскость на четыре части, называемые квадрантами. Производя нумерацию квадрантов (I, II, III и IV) в направлении против хода часовой стрелки, отправляясь от того квадранта, где обе координаты положительны, получим следующую таблицу знаков координат: Как выглядит прямоугольная система координат

Отрезок ОМ у соединяющий начало координат О с точкой М (рис. 2), называется ее радиусом-вектором. Обозначая через ф угол, образованный отрезком ОМ с положительным направлением оси Ох, и через Как выглядит прямоугольная система координатего длину, для точки М, лежащей в I квадранте, из треугольников ОММ’ и ОММ» получим Как выглядит прямоугольная система координатКак выглядит прямоугольная система координат

Нетрудно убедиться, что формулы (1) будут справедливы для координат точек всех квадрантов. Таким образом, знак абсциссы х точки М совпадает со знаком косинуса, а знак ее ординаты у — со знаком синуса в соответствующем квадранте.

Легко видеть, что если точка лежит на оси абсцисс, то ее ордината у равна нулю; если же она лежит на оси ординат, ее абсцисса х равна нулю, и обратно. Следовательно, если точка совпадает с началом координат, то равны нулю обе ее координаты.

Как выглядит прямоугольная система координат

В дальнейшем прямоугольные декартовы координаты для краткости будем называть просто прямоугольными координатами.

В следующих параграфах рассмотрим некоторые простейшие задачи на применение прямоугольных координат на плоскости.

Преобразование прямоугольной системы координат

При решении задач иногда выгодно вместо данной прямоугольной системы координат Как выглядит прямоугольная система координатвыбрать другую прямоугольную систему координат О’х’у определенным образом ориентированную относительно первой. Например, при межпланетных путешествиях можно пользоваться системой координат, связанной с центром Земли (геоцентрическая система координат); однако более удобно использовать систему координат, связанную с центром Солнца (гелиоцентрическая система координат).

Возникает вопрос о том, как от одной системы координат перейти к другой.

Рассмотрим сначала простейший случай (рис. 3), когда оси «новой системы координат» О’х’у’ параллельны соответствующим осям «старой системы координат о Оху и имеют одинаковые направления с ними (параллельный перенос системы координат).

Как выглядит прямоугольная система координат

Пусть начало новой системы координат — точка О’ — имеет координаты (а, Ь) в старой системе координат. Точка М плоскости со «старыми координатами» (х, у) будет иметь некоторые «новые координаты» [х\ у’] (для ясности мы их обозначаем квадратными скобками). Из рис. 3 непосредственно получаем

т. е. новые координаты точки равны ее старым координатам минус старые координаты нового начала.

Обратно, из (1) находим

Пусть теперь «новая система» координат Ох’у\ при неизменном начале О, повернута относительно «старой системы» Оху на угол а (рис. 4), т. е. Как выглядит прямоугольная система координат, причем а считается положительным, если поворот осуществляется против хода часовой стрелки, и отрицательным — в противоположном случае (поворот системы координат). Как выглядит прямоугольная система координат

Обозначим через Как выглядит прямоугольная система координатугол, образованный радиусом-вектором г = ОМ точки М с осью Ох’; тогда отрезок ОМ, с учетом знака угла Как выглядит прямоугольная система координат), будет составлять с осью Ох угол Как выглядит прямоугольная система координат. Отсюда на основании формул (1) из при любом расположении точки М имеем

Как выглядит прямоугольная система координат

Как выглядит прямоугольная система координат

Так как новые координаты точки М, очевидно, есть

Как выглядит прямоугольная система координат

то из формул (3) и (4) получаем

Как выглядит прямоугольная система координат

Для запоминания формул (6) используют следующий мнемонический прием: говорят, что первая формула (6) содержит полный беспорядок, а вторая — полный порядок. Действительно, в первой формуле на первом месте стоит cos, на втором — sin; кроме того, присутствует знак минус. Во второй формуле (6) никаких нарушений правильности в этом смысле нет.

Как выглядит прямоугольная система координат

Наконец, в общем случае, когда новое начало координат есть точка О’ (a, Ь) и ось О’х’ образует с осью Ох угол а, соединяя формулы (2) и (6), находим

Как выглядит прямоугольная система координат

Здесь угол Р считается положительным, если радиус-вектор ОМ повернут относительно оси Ох’ против хода часовой стрелки, и отрицательным, если он повернут относительно этой оси по ходу часовой стрелки.

Аналогично, из формул (1) и (7) получаем

Как выглядит прямоугольная система координат

Из формул (8) и (9) вытекает, что формулы перехода от одной прямоугольной системы координат к другой прямоугольной системе координат являются линейными функциями как новых, так и старых координат, т. е. содержат эти координаты в первой степени.

Пример:

Отрезок ОМ, где точка М имеет координаты (х, г/), повернут на угол а = 120° против хода часовой стрелки (рис. 5). Каковы будут координаты х’ и у’ нового положения М’ точки М?

Решение:

Предполагая, что с точкой М связана подвижная система координат Ох’у\ на основании формул (6) будем иметь

Как выглядит прямоугольная система координат

Расстояние между двумя точками на плоскости

1) Найдем сначала расстояние г от начала координат О (0, 0) до точки М (х, у) (рис. 6).

Расстояние г = ОМ, очевидно, является гипотенузой прямоугольного Как выглядит прямоугольная система координатОММ’ с катетами Как выглядит прямоугольная система координат. По теореме Пифагора получаем

Как выглядит прямоугольная система координат

Таким образом, расстояние от начала координат до некоторой точки равно корню квадратному из суммы квадратов координат этой точки.

Как выглядит прямоугольная система координат

2) В общем случае, пусть для точек A Как выглядит прямоугольная система координати Б Как выглядит прямоугольная система координат(рис. 7) требуется найти расстояние d = АВ между этими точками.

Выберем новую систему координат Ах’у’ начало которой совпадает с точкой А и оси которой параллельны прежним осям и имеют, соответственно, одинаковые направления с ними. Тогда в новой системе координат точки Л и В будут иметь координаты А [0, 0] и Б Как выглядит прямоугольная система координат. Отсюда на основании формулы (1) получаем

Как выглядит прямоугольная система координат

т. е. расстояние между двумя точками плоскости (при любом их расположении) равно корню квадратному из суммы квадратов разностей одноименных координат этих точек.

Замечание. Формула (2) дает также длину отрезка АВ. Легко определить направление этого отрезка. Из прямоугольного А ABC имеем

Как выглядит прямоугольная система координат

(dx и dy называются проекциями отрезка АВ на оси координат Оху). Отсюда получаем Как выглядит прямоугольная система координатгде d определяется формулой (2).

Пример:

Танк на местности переместился из точки А (-30, 80) в точку Б (50, 20) (относительно некоторой системы координат Оху)> причем координаты точек даны в километрах. Найти путь d, пройденный танком, если он двигался, не меняя направления.

Решение:

Применяя формулу (2), имеем

Как выглядит прямоугольная система координат

Деление отрезка в данном отношении

Предположим, что отрезок АВ (рис. 8), соединяющий точки A (xl9 уг) и В (x2t у2), разделен точкой С на два отрезка АС и СБ, причем отношение АС к СБ равно I (I > 0):

Как выглядит прямоугольная система координат

Требуется выразить координаты х и у точки С(х, у) через координаты концов отрезка АВ.

Опустим перпендикуляры Как выглядит прямоугольная система координатсоответственно из точек А, В и С на ось Ох. Тогда получим, что три параллельные прямые Как выглядит прямоугольная система координатпересекают стороны угла (не обозначенного на рисунке), образованного прямыми АВ и Ох. Как известно из элементарной геометрии, пучок параллельных прямых рассекает стороны угла на пропорциональные части; поэтому

Как выглядит прямоугольная система координат

откуда на основании равенства (1) будем иметь

Как выглядит прямоугольная система координат

Как выглядит прямоугольная система координат

Решая уравнение (3) относительно неизвестной абсциссы х, будем иметь

Как выглядит прямоугольная система координат

Как выглядит прямоугольная система координатИтак, координаты точки С (ху у), делящей отрезок АВ в отношении / (считая от А к В), определяются формулами Как выглядит прямоугольная система координатЕсли точка С делит отрезок АВ пополам, то АС = СВ и, следовательно, I = АС/СВ = 1. Обозначая координаты середины отрезка АВ через х, у, получим на основании формул (4) Как выглядит прямоугольная система координат

т. е. координаты середины отрезка равны полусуммам соответствующих координат его концов.

Примечание. При выводе формул (4) и (5) мы предполагали, что концы А и В отрезка АВ лежат в первом квадранте и, следовательно, координаты точек Аи В положительны. Легко доказать, что формулы (4) и (5) будут справедливы и в случае произвольного расположения отрезка АВ на координатной плоскости.

Пример:

Решение:

В этом случае I = 3/2 и, следовательно,

Как выглядит прямоугольная система координат

Площадь треугольника

Пусть требуется найти площадь S треугольника ABC (рис. 9) с вершинами

Как выглядит прямоугольная система координат

Пусть АВ = с, АС = Ь, а углы, образованные этими сторонами с осью Ох, соответственно равны Как выглядит прямоугольная система координат.

На основании (см. замечание) имеем (рис. 9)

Как выглядит прямоугольная система координат

и Как выглядит прямоугольная система координат

Как выглядит прямоугольная система координат

Пусть Как выглядит прямоугольная система координат; очевидно (рис. 9), Как выглядит прямоугольная система координат. По известной формуле тригонометрии получаем

Как выглядит прямоугольная система координат

Отсюда в силу (1) и (2) имеем

Как выглядит прямоугольная система координат

Заметим, что формула (4) при ином расположении вершин может дать площадь треугольника S со знаком минус. Поэтому формулу для площади треугольника обычно пишут в виде

Как выглядит прямоугольная система координат

где знак выбирается так, чтобы для площади получалось положительное число,

Используя понятие определителя второго порядка

Как выглядит прямоугольная система координат

формулу (4′) можно записать в удобной для запоминания форме:

Как выглядит прямоугольная система координат

Формула (4′) упрощается, если точка А Как выглядит прямоугольная система координатнаходится в начале координат. А именно, полагая Как выглядит прямоугольная система координатполучим

Как выглядит прямоугольная система координат

Отметим, что если точки А, В, С находятся на одной прямой, то площадь S = 0; и обратно, если S = 0, то вершины А, Б и С расположены на одной прямой.

Пример:

По формуле (5) имеемКак выглядит прямоугольная система координат

Замечание. Вычисление площади многоугольника сводится к вычислению площадей треугольников. Для этого достаточно разбить многоугольник на треугольники, площади которых вычисляют по формуле (4).

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *