Как выбрать матрицу для видеокамеры

Как выбрать матрицу камеры?

Как выбрать матрицу для видеокамеры

Задача матрицы — сформировать изображение, сфокусированное на него объективом. Разберем типы матриц, ключевые характеристики и технологии. Это нужно для того, чтобы мотивировано выбирать камеру видеонаблюдения.

Тип матрицы

Существуют два типа матриц:

Если очень упрощать — то CCD-матрица — преобразует заряды пикселей в аналоговый сигнал, а CMOS-матрица в цифровую информацию. Считается, что CCD-матрицы более светочувствительные и имеют лучшую цветопередачу (характерный пример — Sony ExView HAD). CMOS-матрицы имеют большую интеграцию и экономичность сенсора, меньшее энергопотребление и нагрев, более широкий динамический диапазон, простоту производства и меньшую стоимость, особенно мегапиксельных вариантов.

Сейчас CCD-матрицы остались разве что в старых моделях аналоговых камер стандарта CVBS (PAL, NTSC). Для IP-камер и аналоговых камер высокого разрешения стандартов CVI, TVI, AHD — можно найти почти исключительно матрицы CMOS за очень редким исключением.

Sony Exmor

Говоря о матрицах, нельзя не упомянуть технологию конкретного производителя — на столько она повлияла на развитие CMOS-матриц. Современные CMOS-сенсоры, в отличие от CCD, построены по слоёной схеме и похожи на этажерку. Под антимуаровым фильтром расположены микролинзы переменной формы. Еще ниже — сам фотодиод. Под чувствительной поверхностью расположен модуль, который компания Sony называет DRAM. Это пять этажей из аналогово-цифрового преобразователя, буфера, системы сжатия и цепочки ускорителей (3-20 раз) передачи информационных пакетов по шине данных в LSI – линейный системный интегратор, расположенный перед процессором Sony BIONZ.

В 2009 году вышла матрица BSI-Exmor-RS с «задней подсветкой», её «рабочий отрезок» от микролинзы до пикселя уменьшен втрое, ходу луча света ничто не препятствует, а расстояние до «соседа» отсутствует — даже микролинзы плавно переходят друг в друга. Все вспомогательные и управляющие структуры каждого пикселя убраны в нижние слои. Стало возможным увеличить диаметр датчика. Чувствительность и динамический диапазон обогнали CCD-матрицы.

STARVIS™

Ещё одна матрица CMOS с обратной засветкой (back-illuminated sensor) от компании Sony.

Live-MOS-матрица

Другая технология, которую некоторые даже выделяют в отдельный тип матрицы — разработана компанией Panasonic. Live-MOS / NMOS матрица (Live MOS sensor) — светочувствительная матрица, построенная по CMOS-технологии, имеющая благодаря ряду технических и топологических решений возможность «живого» просмотра изображения. В матрицах Panasonic уменьшено расстояние от фотодиода до микролинзы. Упрощена передача сигналов с поверхности фотодиода. Уменьшено количество управляющих сигналов с 3 (стандартные CMOS) до 2 (как в CCD), что увеличило фоточувствительную область пикселя. Применен малошумящий усилитель фотодиода. Используется более тонкая структура слоя датчиков. Сниженное напряжение питания уменьшает шум и нагрев матрицы.

Starlight, Lightfinder, DarkFighter, ColorVu и др.

Суть всех перечисленных технологий — с помощью комбинации светочувствительного объектива и матрицы, эффективной технологии шумоподавления — добиться цветного изображения при низком уровне освещенности. Подробнее про светочувствительность мы поговорим на следующем шаге — когда будем обсуждать обработку изображения с матрицы.

Формат (размер)

Наряду с типом матрицы — её физический размер — ключевой фактор, влияющий на светочувствительность (способность формировать контрастное изображение при низком уровне освещенности).

Чем крупнее матрица — тем больше на нее может попасть света — тем «лучше» камера «видит в темноте». Как правило 1/4″ — применяется в совсем дешевых камерах, а 1/2″ — в PTZ-камерах (поворотных). Для применения на улице при условии отсутствия хорошего наружного освещения лучше выбирать матрицы 1/2.8″, 1/2.7″ или более крупные. Для применения внутри помещения с постоянным уровнем освещения — может быть достаточным и 1/3″.

Разрешение

Параметр «разрешение матрицы» — показывает число пикселей (наименьших логических элементов двумерного цифрового изображения в растровой графике), приходящихся на физический размер матрицы. Чем выше разрешение (больше «мегапикселей») — тем больше деталей в изображении, фокусируемом на матрице можно сохранить.

При этом не стоить ставить знак равенства между разрешением матрицы и итоговым разрешением изображения. В тракте объектив — матрица — процессор — передача изображения — монитор каждый узел вносит искажения в итоговую картинку. Итоговое изображение будет зависеть от самого «слабого звена». Испортить изображение легко — это может сделать объектив (с более низким разрешением чем матрица, наличием дисторсии, фокусировки вне ГРИП и т.п.), это может сделать процессор камеры (потери на кодировании, потери при цифровой обработке), это могут быть потери при передачи данных (для «аналоговых стандартов»), это может сделать монитор (несовпадение разрешение потока с камеры и части монитора, на которое оно выводится).

На разрешение изображения будет влиять соотношение сигнал / шум матрицы, светочувствительность объектива, размер и светочувствительность матрицы.

Чем больше разрешение матрицы при фиксированном формате (размере) — тем меньше физический размер пикселя, меньше света попадает на пиксель, меньше светочувствительность камеры. Поэтому «переразмеривать» разрешение матрицы крайне не выгодно:

Про подбор разрешения камеры мы подробно рассмотрим в уроке 3. Выбор места установки и тактико-технических характеристик камер.

Развёртка

Сложно объяснить, что такое развёртка для человека 21 века 🙂 Существует чересстрочная и прогрессивная развертка. Чересстрочная развертка — наследие вещательных телевизионных стандартов (PAL, NTSC) — и сейчас почти не используется. Суть чересстрочной развертки на картинке:

Основная идея чересстрочной развертки была уместить полосу сигнала стандарта цветного телевидения в полосу сигнала черно-белого старта (что выглядит как каприз потребителей — «втиснете» в 4 раза больше информации в ту же полосу частот для совместимости стандартов черно-белого и цветного телевидения).

Понятно, что для видеонаблюдения (которое не является вещательным и передается, как правило, по кабелю) — это полнейшая бессмыслица, поэтому чересстрочную развертку можно встретить разве что в очень старых аналоговых камерах стандартов CVBS (PAL, NTSC) либо в дешевых аналоговых видеодомофонах тех же стандартов.

Соотношение сторон кадра

ФорматРазрешение (в пикселях)Соотношение сторонРазвёртка
1MP/720P1280×72016:9Прогрессивная
SXGA/960P1280×9604:3Прогрессивная
1.3MP1280×10245:4Прогрессивная
2MP/1080P1920×108016:9Прогрессивная
2.3MP1920×120016:10Прогрессивная
3MP2048×15364:3Прогрессивная
4MP2592×152016:9Прогрессивная
5MP2560×19604:3Прогрессивная
6MP3072×20483:2Прогрессивная
4K Ultra HD3840×216016:9Прогрессивная
8K Ultra HD7680×432016:9Прогрессивная

Соотношение сторон кадра для разных разрешений матрицы

Соотношение сторон кадра напрямую зависит от соотношения сторон матрицы. Наиболее распространенные — 16:9 и 4:3. Современные мониторы, как правило, сами — формата 16:9, поэтому формат 4:3 — не самый удачный, кроме того, как правило область интереса находится в центре кадра, а не сверху и снизу. Поэтому формат 16:9 — наиболее распространен.

«Коридорный» формат

Это всего-лишь «повернутое» на 90° изображение (9:16; 3:4 и т.п.). Коридорный формат удобен для ряда локаций — просмотра длинных коридоров, периметра промышленного предприятия (забора) и др. Для применения такого формата камера должна иметь возможность поворота объектива на 90° либо установки всей камеры «на боку». Процессор камеры должен уметь формировать поток, повернутый на 90° в обратную сторону.

Выводы

Приходите учиться! Будем разбирать ключевые моменты — выбор камер, локальной сети, серверов и софта. Подробности — по ссылке в баннере:

Источник

Как влияет размер матрицы видеокамеры на качество съёмки?

Добрый день, дорогие читатели, сегодняшняя статья точно заинтересует любителей профессиональной и любительской видеосъемки, ведь речь в ней пойдет о самых важных составляющих цифровой видеокамеры. Если режиссер хочет справиться со своей задачей на 5+, отснять превосходный, качественный материал, то ему стоит узнать о важности микросхем для камеры, какой размер матрицы видеокамеры существует и на какой из них нужно остановить свой выбор.

Технологическая начинка видеокамеры

Когда меня спрашивают, на какие технические параметры и компоненты стоит обращать внимание при выборе видеокамеры, то я отвечаю, что для каждой камеры (аналоговой, цифровой, HD) существует единая стандартная база. Именно эти компоненты играют важнейшую роль в качестве съемки, работоспособности и мощности аппарата.

Думаю, вам тоже будет интересно узнать о них:

Конечно же, технологический прогресс развивается со скоростью света, поэтому функционал камер значительно расширился. Ответ на вопрос, из чего состоит цифровая видеокамера, не может быть однозначным, ведь различные бренды выпускают аппараты с различным набором компонентов.

Как выбрать матрицу для видеокамеры

Благодаря этим составляющим каждый желающий может отснять высококачественное любительское кино, запечатлеть самые счастливые события, заснять красивые места и поделиться этим с окружающими. Ведь вряд ли существует в этом мире хоть один человек, который не хотел бы сделать памятное видео того либо иного события, не так ли?

Как выбрать матрицу для видеокамеры

Назначение матрицы и ее разновидности

Если говорить о разновидностях и технологиях, то существует всего 2 матричных типа: CMOS и CCD. Конечно, у вас сразу возникает в голове вопрос, какая же технология лучше для любительской видеосъемки? И я вам отвечу, нет предела совершенству, каждой из них далеко до идеала, каждая обладает своими недостатками и достоинствами, о которых мы поговорим дальше.

Тип CMOS или КМОП

Отличительной чертой CMOS-матриц можно считать низкое энергопотребление, что является неоспоримым плюсом.

К особенностям данной технологии можно отнести:

Как выбрать матрицу для видеокамеры

Тип CCD

Наиболее важным преимуществом CCD-матриц является высококачественное изображение с отсутствием посторонних шумов. Также к достоинствам данной технологии можно считать высокий, практически 100% коэффициент заполнения. Такие камеры относятся к профессиональным устройствам и позволяют получить динамичное цветное изображение.

Довольно часто в магазинах техники можно встретить видеокамеры с 2-3 матрицами, если средства позволяют, то смело можно покупать данное устройство. Ведь несколько матриц всегда лучше, нежели одна.

Как выбрать матрицу для видеокамеры

Придя в магазин и спрашивая о размерах матрицы видеокамеры, вы можете получить от консультанта следующий ответ: 1\2, 1\3, 1\4 и т.д. Не пугайтесь столь странных ответов, эти числа не что иное, как дюймы. Тут нужно понимать, что чем выше показатель физического размера матрицы, тем качественнее будет изображение. То есть камера в 1\2 дюйм будет лучше, чем 1\8, это также отразится на стоимости аппарата.

На этом у меня все, до новых встреч, дорогие читатели. Надеюсь, что данная информация станет полезной для Вас и Ваших друзей. Подписывайтесь на статьи блога и будьте всегда в курсе свежих новостей технологического мира.

Спасибо за внимание! До новых встреч на моём блоге. С уважением, Ростислав Кузьмин.

Источник

Матрицы. Красная, зеленая или синяя капсула?

Как выбрать матрицу для видеокамеры

Как выбрать матрицу для видеокамеры

Содержание

Содержание

В записывающей и воспроизводящей аппаратуре на смену фотопленкам и кинескопам пришли матрицы. Визуально они похожи на прямоугольные таблицы со столбцами и строчками, но значительно меньше по размеру. Каждая клетка-ячейка – это один или несколько электронных элементов, выполняющих общую функцию. Называют их пикселями, а количество измеряют миллионами. От типа и характеристик матрицы прямо зависит качество фото и видео.

Устройство матрицы камеры

Геометрические размеры такой матрицы очень малы. Например, у видеокамеры Sony FDR-AX33 диагональ 7,76 миллиметров.

У других моделей она может быть чуть больше или меньше. Поэтому ее относят к микроэлектронным устройствам.

Элементы матрицы закреплены на тонкой пластине и связанны между собой электрически. Микроэлектронные устройства подобной конструкции называют интегральными микросхемами. Следовательно, матрица камеры является интегральной микросхемой. Сокращенно ИМС.

Элементы принимающей матрицы светочувствительные. Они изменяют свои свойства под действием света. Природа света довольно сложна, но можно условно сказать, что он «состоит» из элементарных частиц – фотонов. Отсюда названия: фотоматрица и фотоэлементы.

Принцип работы фотоматрицы

Главную роль при фото- и видеосъемке играет свет, исходящий от солнца или от источников искусственного освещения. Свет падает на предметы, отражается от них, фокусируется в объективе и проецируется на матрицу цифровой камеры.

Как выбрать матрицу для видеокамеры

При попадании потока света на матрицу, фотоны передают свою энергию фотоэлементам. В результате такого взаимодействия возникают носители электрического заряда и электрический ток. На выходах фотоэлементов генерируется электрическое напряжение. Оно прямо пропорционально интенсивности светового потока, который в свою очередь зависит от контуров и свойств объекта съемки. Таким образом, электрическое напряжение является сигналом, который несет сообщение об объекте съемки.

Преобразование полученного света сначала в электрический заряд, а затем в электрический сигнал – это и есть основная задача и основной принцип работы фотоматрицы.

Из аналогового в цифровой

Сигнал напряжения непрерывен и определен в любой промежуток времени, поэтому он по определению является аналоговым. Его сложно записать, передать, воспроизвести без ошибок и помех. Поэтому его преобразуют в цифровой сигнал. Для этой цели используется еще один электронный компонент камеры – аналого-цифровой преобразователь.

Сигнал напряжения поступает в АЦП, где сначала проходит дискретизацию. При этой операции выделяются одинаковые интервалы времени, которым соответствуют определенные значения напряжения. На следующем этапе выполняется квантование – разбиение значений напряжения на уровни и их округление.

Как выбрать матрицу для видеокамеры

После всех преобразований на выходе из АЦП получается цифровой сигнал. Далее он кодируется и превращается в двоичный код из нулей и единиц. После сжатия в виде файла сохраняется на карте памяти или другом носителе. Это ваша фотография или видеофильм в цифровом виде. Вы можете воспроизвести и просмотреть его на ноутбуке или смартфоне, переслать другу или разместить в социальных сетях.

Типы принимающих матриц

Первые цифровые фотоаппараты потребительского класса, были оснащены CCD-матрицами. Современные представители: Kodak PIXPRO FZ43 и Nikon Coolpix A300.

Пиксель CCD – это только один фотоэлемент. Он пассивен, так как электрический ток в нем протекает произвольно. Сигналы считываются с одного или двух каналов и последовательно: от одного ряда к другому. Для оцифровки передаются за пределы подложки матрицы.

Процесс длится несколько микросекунд, но быстродвижущийся объект успеет изменить положение и изображение на снимке может получиться размытым. Так как вся CCD состоит из фотоэлементов, у нее высокая светочувствительность. Качественные снимки получаются даже при плохом освещении.

Как выбрать матрицу для видеокамеры

Большинство современных цифровых фото- и видеокамер оснащены CMOS-матрицами. Они установлены в фотоаппарате Nikon D3400, в видеокамере Sony HDR-CX625 и многих других.

Пиксель CMOS матрицы активен – он включает не только фотоэлемент, но и элемент для усиления электрического тока. Сигнал считывается в любом порядке и с любого участка матрицы. На одной подложке с пикселями установлен и АЦП.

Благодаря такой архитектуре, CMOS обеспечивают более быструю передачу данных. Фото мчащегося по автотрассе Феррари получится без искажений. Также снижается энергопотребление – камера в автономном режиме проработает дольше.

В то же время из-за дополнительных элементов на подложке размер пикселей у CMOS меньше, поэтому они улавливают не весь поступивший свет. Это влияет на качество снимков, сделанных при слабом освещении. По этой же причине могут возникать цифровые шумы – дефекты изображения в виде зернистости.

С развитием технологий характеристики CMOS улучшаются. Обновлённые BSI CMOS установлены во многих камерах Panasonic, включая модели HC-V800, HC-VX1, HC-VXF1. Они обладают более высокой светочувствительностью. Даже при слабом освещении изображения получаются с высокой детализацией и глубокой цветопередачей.

Матрицы в ЖК-дисплеях

Когда вы смотрите телевизор Hartens 32 или работаете на ноутбуке Lenovo IdeaPad, изображение воспроизводится с помощью жидкокристаллического дисплея. Английская аббревиатура – LCD. Такая технология массово используется в производстве цифровой видеотехники.

Жидкокристаллические матрицы имеют многослойную структуру. В центре – слой жидких кристаллов. Они совмещают в себе свойства кристаллических тел и жидкостей, одновременное проявление текучести и упорядоченного расположения. Каждый пиксель LCD «наполнен» жидкими кристаллами. Для подачи электрического напряжения к пикселям подведены электроды.

Как выбрать матрицу для видеокамеры

От носителя к дисплею

При передаче цифровой информации с носителя на монитор важным звеном является видеокарта. Ее графический редактор выполняет расчеты выводимого изображения. При помощи видеоконтроллера изображение формируется в видеопамяти. Он же обеспечивает формирование сигналов развертки для монитора. За передачу цифрового сигнала на ЖК-дисплей отвечает устройство TMDS.

Если у видеокарты нет выхода DVI, она не сможет передать цифровой сигнал. В этом случае он преобразуется сначала в аналоговый, а затем через АЦП самого дисплея вновь в цифровой. Процессы таких преобразований аналогичны тем, о которых рассказывалось выше.

Далее цифровой сигнал примет контролер дисплея, раскодирует его, преобразует в сигнал управления дисплеям, масштабирует изображение, выполнит цветовую коррекцию, сформирует уровни напряжения.

В зависимости от уровня напряжения, молекулы жидких кристаллов изменяют свою пространственную ориентацию. Вместе с этим меняется и способность пикселей пропускать свет, то есть меняется их прозрачность. Такой эффект и дает возможность воспроизводить и просматривать видеофильмы и фотографии.

Передающие матрицы IPS и TN

Матрицы IPS и TN отличаются между собой геометрией поверхностей и материалами изготовления. Общим остается наличие жидких кристаллов. В TN LCD стержневидные молекулы закручены в спирали. У пикселей высокая скорость отклика, но при этом угол обзора экрана невелик и на нём нет насыщенного черного цвета. Позже была внедрена технология TN+film, в которой угол обзора увеличили за счет дополнительного слоя. Пример – ноутбук HP 15-bw662ur.

В дисплеях более поздней технологии IPS жидкие кристаллы расположены параллельно и в одной плоскости. При подаче напряжения они одновременно меняют свое положение. Это дает высокую яркость и большой угол обзора. Но скорость отклика во время игр оставляет желать лучшего. В новых модификациях IPS LCD скорость отклика повышена до 5 и более миллисекунд. При таких показателях они становятся хорошим вариантом не только для просмотра фильмов, но и для игр. IPS-дисплеем снабжены ультрабук Huawei Matebook 13, планшеты Lenovo TAB4 10 Plus, Lenovo Yoga Book C930, Apple iPad Pro 2018 и многие другие гаджеты.

В культовой киноленте главный герой выбирал между красной и синей таблеткой, между реальностью и иллюзиями. Так и выбор матрицы определяет, каким предстанет мир на ваших фото и видео, на экранах телевизоров, дисплеях планшетов и мониторах ноутбуков.

Источник

Матрицы для камер видеонаблюдения. На что обращать внимание?

Как выбрать матрицу для видеокамеры

Качество изображения видеокамеры во многом зависит от используемого в ней светочувствительного сенсора (матрицы). Ведь поставь хоть лучший процессор для оцифровки видео – если на матрице получено плохое изображение, хорошим оно уже не станет. Попытаюсь популярно объяснить, на что следует обращать внимание в характеристиках сенсора камеры видеонаблюдения, чтобы потом не было мучительно больно при взгляде на изображение…

Тип матрицы

В интернете вы наверняка найдете информацию о том, что в камерах видеонаблюдения применяются CCD (ПЗС, прибор с зарядовой связью) и CMOS (КМОП, комплементарная структура металл-оксид-полупроводник) светочувствительные матрицы. Забудьте! Давно остался только CMOS, только хардкор.

CCD матрицы, при всех их достоинствах (лучшая светочувствительность и цветопередача, меньший уровень шумов) – уже практически не используются в видеонаблюдении. Потому что сам принцип их действия CCD матриц – последовательное считывание заряда по ячейкам – слишком медленный, чтобы удовлетворить запросы быстрых современных видеокамер высокого разрешения. Ну и самое главное CCD дороже в производстве, а в условиях современной высококонкурентной среды на счету каждая копейка прибыли. Вот почему все ключевые производители сосредоточились на выпуске именно CMOS матриц.

Осталось производителей, между прочим, не так и много. Крупнейшими, по состоянию на начало 2017 года, являются компании: ON Semiconductor Corporation (в свое время поглотившая известную профильную компанию Aptina), Omnivision Technologies Inc., Samsung Electronics и Sony Corporation. Кроме того, матрицы для собственных нужд производит, например, компания Canon, Hikvision.

Конкуренцию старым брендам пытаются создать молодые, полные энтузиазма и денег китайские чипмейкеры «второго эшелона», вроде компании SOI (Silicon Optronics, Inc.) и др. Трудно сказать, выживет ли молодая поросль, когда на рынке CMOS сенсоров наступит насыщение и станет слишком тесно. Но в любом случае в этом сегменте не исключено появление новых игроков и обострение борьбы, ведь наладить производство CMOS сенсоров не слишком и сложная по современным меркам задача.

Крупные мировые бренды типа Hikvision или Dahua обычно предпочитают работать с производителями матриц первого эшелона или собственными. Локальные же ведут себя по разному. Например, Tecsar даже в недорогих камерах использует матрицы с хорошей репутацией от ON Semiconductor, Omnivision и Sony. В в ассортименте других “народных” марок, например Berger, широко представлены сенсоры SOI и т.д.

Как делаются матрицы цифровых камер

Лидерские качества CMOS

CMOS технология предусматривает размещение электронных компонентов (конденсаторов, транзисторов) непосредственно в каждом пикселе светочувствительной матрицы.

Как выбрать матрицу для видеокамеры

Структура пикселя и CMOS матрицы

Это уменьшает полезную площадь светочувствительного элемента и снижает чувствительность, плюс активные элементы повышают уровень собственных шумов матрицы. Зато технология позволяет осуществлять преобразование заряда светочувствительного элемента в электрический сигнал прямо в матрице и гораздо быстрее сформировать цифровой сигнал изображения, что критично для видеокамер. Именно поэтому CMOS лучше подходят для камер видеонаблюдения, где требуется быстрая смена кадров.

Принцип работы CCD и CMOS матриц

Плюс возможность произвольного считывания ячеек CMOS матрицы дает возможность буквально «на лету» изменять качество и битрейт получаемого видео, что невозможно для CCD. А энергопотребление CMOS-решений ниже, что тоже немаловажно для компактных камер наблюдения.

Для получения цветного изображения матрица разлагает световой поток на составляющие цвета: красный, зеленый и синий. Для этого используются соответствующие светофильтры. Разные производители варьируют размещение и количество светочувствительных элементов разного цвета, но суть от этого не меняется.

Принцип формирования изображения на светочувствительной матрице:
Как выбрать матрицу для видеокамеры

Р – светочувствительный элемент
Т — электронные компоненты

Как выбрать матрицу для видеокамеры

Как устроен и работает КМОП сенсор камеры можно также посмотреть на этом видео от Canon:

CMOS матрицы всех производителей базируются на вышеописанных общих принципах, отличаясь лишь в деталях реализации на кремнии. Например, в погоне за дешевизной и сверхприбылью, чипмейкеры стараются выпускать матрицы как можно меньшего размера. Расплата за это неизбежна…

Почему большой – это хорошо

Типоразмер (или другими словами формат) матрицы обычно измеряют по диагонали в дюймах и указывают в виде дроби, например 1/4″, 1/3″, 2/3″, 1/2 дюйма и др.

Первое правило выбора лучшей матрицы довольно простое: при одинаковом количестве пикселей (разрешении), чем больше физические размеры сенсора – тем лучше. У большей матрицы крупнее пиксели, а значит, она улавливает больше света. Пиксели большей матрицы расположены менее тесно, а значит меньше влияние взаимных помех и ниже уровень паразитных шумов, что напрямую влияет на качество получаемого изображения. Наконец, более крупная матрица позволяет получить большие углы обзора при использовании объектива с одним и тем же фокусным расстоянием!

Как выбрать матрицу для видеокамеры
Светочувствительная матрица производства ON Semicondactor для камер видеонаблюдения

Как выбрать матрицу для видеокамеры

Светочувствительная матрица, установленная на плате видеокамеры

Увы, большеформатные матрицы в массовых камерах видеонаблюдения сейчас практически не используются в силу дороговизны и самих матриц, и объективов для них, которые должны иметь более крупные линзы и, соответственно, габариты и стоимость. На сегодня в камеры устанавливают в основном матрицы типоразмера 1/2″ – 1/4″ (это самые крошечные). Выбирая камеру, нужно четко понимать, что покупая ультрадешевую модель с 1/4″ матрицей производства SOI и крохотным объективом с пластиковыми линзами сомнительной прозрачности, вы не сможете создать систему видеоконтроля приемлемого качества, на которой можно было бы хорошо различать небольшие детали отснятых событий, особенно при съемке в условиях слабой освещенности.

Выбирая же камеру с матрицей Sony типоразмера 1/2.8″ вы априори получите гораздо лучший результат по качеству видео, камеру с такой матрицей уже вполне можно использовать в профессиональной системе видеонаблюдения. И чувствительность у такой камеры будет заведомо выше, что позволит лучше снимать в условиях слабой освещенности: в плохую погоду, в сумерках, в полутемном помещении и т.п. С увеличением разрешения при том же размере матрицы светочувствительность падает, и это тоже нужно учитывать при выборе. Для камеры, установленной в темной подворотне у черного хода, имеет смысл выбрать матрицу с меньшим разрешением и более высокой чувствительностью, чем камеру ультравысокого разрешения с низкой чувствительностью матрицы на которой из-за шумов ничего нельзя будет толком различить.

Светочувствительность матрицы определяет возможность ее работы в условиях слабого окружающего освещения. С точки зрения физики это выглядит совсем банально: чем меньше световой энергии достаточно для получения изображения матрицей, тем выше ее светочувствительность. Но! Будем откровенны, гнаться за высокой чувствительностью уже особо не стоит. Дело в том, что современные камеры видеонаблюдения благополучно переходят в режимы «день/ночь», при снижении освещенности переводя матрицу в режим черно-белого изображения с более высокой чувствительностью. Плюс автоматическое включение инфракрасной подсветки дает камерам возможность отлично снимать даже в полной темноте. Например, в закрытом помещении без окон и с выключенным светом, когда об уровне какой-то внешней освещенности даже речи нет. Светочувствительность остается критичной для камер лишенных ИК подсветки, но использовать такие в современном видеонаблюдении – почти моветон. Хотя корпусные модели без подсветки все еще продаются, конечно.

Сравнение матриц разных производителей

Вообще правило таково: чем выше освещенность, тем лучше снимет матрица и, соответственно, камера. Поэтому не рекомендуется ставить камеры по полутемным закоулкам, даже если у них хорошая чувствительность. Имейте в виду, что в спецификации матриц камер обычно указывается минимальный уровень освещенности, когда можно зафиксировать хоть какое-то изображение. Но никто не обещает, что это изображение будет хотя бы приемлемого качества! Оно будет отвратительным в 100% случаев, на нем с трудом можно будет что-либо разобрать. Для достижения хотя бы удовлетворительного результата рекомендуется снимать как минимум при освещенности хотя бы в 10-20 раз большей, чем минимально допустимая для матрицы.

Производители придумали ряд технических решений, чтобы улучшить чувствительность CMOS матриц и снизить потери света в процессе фиксации изображения. Для этого в основном используется один принцип: вынести светочувствительный элемент как можно ближе к микролинзе матрицы, собирающей свет. Сначала компания Sony предложила свою технологию Exmor, сократившую путь прохождения света в матрице:

Как выбрать матрицу для видеокамеры

Затем прогрессивные производители дружно перешли на использование матриц с обратной засветкой, позволяющей не только сократить путь света сквозь матрицу, но и сделать полезную площадь светочувствительного слоя больше, разместив его над другими электронными элементами в ячейке:

Как выбрать матрицу для видеокамеры

Технология обратной засветке дает камере максимальную чувствительность. Отсюда вывод – «при прочих равных условиях» лучше приобрести камеру использующую матрицу с обратной засветкой, чем без таковой.

Для улучшения изображения в условиях слабого освещения для слабочувствительных дешевых матриц производители камер могут использовать различные ухищрения. Например, режим «медленного затвора», а говоря проще – режим большой выдержки. Однако «размазывание» контуров движущихся объектов уже на этапе фиксации изображения матрицей в таком режиме не позволяет говорить о мало-мальски качественной видеосъемке, поэтому такой подход совершенно неприемлем в охранном видеонаблюдении, где важны детали.

Определенным прорывом в качестве изображения стало появление технологии Starlight, впервые появившейся в камерах Bosch в 2012 году. Эта технология, благодаря комбинации огромной светочувствительности матрицы (порядка 0,0001 — 0,001 люкс) и очень эффективной технологии шумоподавления позволила получать очень качественное цветное изображение с видеокамер в условиях слабой освещенности и даже в ночное время.

Как выбрать матрицу для видеокамеры

Тогда как традиционный способ преодоления слабой освещенности – использование ИК подсветки – дает возможность получить четкое изображение лишь в монохромном режиме (оттенках серого), камеры с технологией Starlight позволяют получить цветную картинку, обладающую гораздо большей информативностью. В частности, при слабой освещенности система видеонаблюдения с технологией Starlight легко сможет различать цвета автомобилей, одежды и др. важные признаки.

Вот демонстрация технологии Starlight в действии:

При выборе камеры видеонаблюдения обязательно обращайте внимание на характеристики матрицы, а не только ее разрешение. Ведь от этого в значительной степени будет зависеть качество изображения, а следовательно и полезность камеры. В первую очередь следует обращать внимание на надежный бренд, типоразмер и разрешение матрицы, светочувствительность принципиальна лишь для камер лишенных ИК-подсветки.

Очень рекомендую брать камеру с матрицей, по которой можно найти вменяемый даташит с подробной информацией, а не покупать кота в мешке. Например, вы легко найдете спецификации на матрицы производства ON Semiconductor, Omnivision или Sony. А вот мало-мальски подробных характеристик матриц SOI не сыскать днем с фонарем. Возникает подозрение, что производителю есть что скрывать…

А общий итог такой: CMOS матрицы безоговорочно победили в устройствах видеонаблюдения и в ближайшем будущем не собираются сдаваться какой-либо конкурирующей технологии.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *