как устроен аккумулятор для телефона

Как устроен аккумулятор телефона и принцип работы

Узнать, из чего состоят аккумуляторы телефона можно, только разобрав его самостоятельно. И то, куча непонятных деталей для неспециалиста мало о чем скажет. Еще один нюанс – разбор батарейки опасная вещь, возможны даже взрывы. Проще – детально изучить устройство, основные элементы и принцип работы батареи из статьи.

Как устроен и работает аккумулятор телефона?

С виду батарея мобильной техники – небольшой блок и информацией о производителе на поверхности. Чтобы разобраться в особенностях этой детали, нужно детальнее осмотреть устройство аккумуляторов смартфонов.

Принципы и устройства аккумулятора

Батарея телефона, благодаря своим химическим и физическим свойствам является живительным элементом для процессора, дисплея и других частей.

Принцип, по которому работает аккумулятор:

Долгое время производители питательных элементов трудились над одной проблемой. Дело в том, что литий внутри аккумулятора – жидкий. Это плохо сказывалось на стабильности его химических свойств. Когда появлялись трещины на корпусе – жидкий состав просто вытекал. Несмотря на такие недостатки, жидкий вариант обладал низким сопротивлением, поэтому лучше выполнял функции, чем сухой.

Современные батарейки сочетают в себе качественную работу Li-Ion и сухих частиц. Принцип работы аккумуляторов телефона основан на тех же ионах лития, но в устройстве установлен сухой сепаратор. Риск возникновения химических реакций сведен к минимуму. Механизм устроенный так, что при правильной эксплуатации батарейки она не взорвется.

как устроен аккумулятор для телефона

Что внутри батарейки?

Самые сложные элементы аккумуляторов мобильников находятся внутри корпуса. Можно изучить их конструкцию и основные функции. Кроме банки с ионами лития и сепаратора, конструкция оснащена контроллером.

Контроллер – это «мозги» батареи сотового, состоит из таких элементов:

Контроллер выполняет следующие функции:

как устроен аккумулятор для телефона

Корпус для батареек и из чего он сделан

После ознакомления с тем, как устроен аккумулятор телефона, остается ознакомиться с корпусом этой детали.

Он состоит их двух слоев:

Производители аккумуляторов для техники используют металл с определенным показателем эластичности. Это делается для того, чтобы корпус выдержал деформации в случае вздутия батареи.

как устроен аккумулятор для телефона

Примерный химический состав аккумуляторов телефона

Современные производители батареек для смартфонов применяют три класса катодных соединений:

Электрохимические цепочки батарей телефонов будут состоять из следующих элементов:

Чтобы понять, как работает и какие функции выполняет батарея смартфона – следует изучить его устройство. Тогда станет понятно, какой элемент за что отвечает, и какие материалы используются.


Источник

Из чего сделаны аккумуляторы для сотовых телефонов

как устроен аккумулятор для телефона

Последнее обновление: 07/05/2021

В телефонах, а так же различных мобильных аксессуарах используются литий-ионные и литий-полимерные аккумуляторы. В статье описана конструкция обоих типов источников питания, а так же принцип работы.

Конструкция литий-ионного аккумулятора

Аккумулятор литий-ионного типа выполнен в герметичном корпусе. Внутри располагаются два электрода – анод и катод, разделенные пористым сепаратором, пропитанным жидким электролитом. Оба электрода соединены с индивидуальными токосъемниками и выведены наружу. Отрицательный анод изготавливается из медной фольги, а положительный катод из алюминиевой. В качестве переносчика заряда выступает ион лития.

Анод и катод в виде ленты плотно свернуты в рулон прямоугольной формы с нанесенным на обратной стороне слоем тонкого графита. Наличие сепаратора обусловлено разделением положительного и отрицательного электрода, поскольку при соприкосновении двух электродов образуется короткое замыкание, что приводит к воспламенению или взрыву батареи. А пористая структура сепаратора позволяет ионам лития свободно перемещаться с анода на катод и обратно.

как устроен аккумулятор для телефона

Принцип работы

При зарядке батареи, ионы лития через электролит перемещаются с положительного катода на отрицательный анод. При зарядке батареи происходит обратный процесс – ион лития покидает отрицательный анод и встраивается в катодный материал. Далее электроны выходят через внешнюю цепь и распределяются контроллером для питания необходимых узлов.

Так же большинство аккумуляторов снабжаются внешними платами защиты. Печатная плата содержит контроллер питания, что ограничивает прием и отдачу энергии при достижении определенного напряжения. Защитный механизм оставляет часть энергии при полной разрядке батареи, сохраняя внутреннюю целостность и возможность дальнейшей эксплуатации аккумулятора. При заполнении энергии питание отключается до наступления разрушения батареи. Если же защитная плата отсутствует, вышеописанные действия выполняет контроллер питания устройства, где располагается аккумулятор.

Конструкция литий-полимерного аккумулятора

Конструктивно литий-полимерные аккумуляторы не многим отличаются в сравнении с литий-ионными. Основное различие в электролите, где вместо жидкого наполнителя используется сухой либо гелеобразный материал на основе полимеров. Благодаря переходу с жидкого электролита на «твердый», получилось реализовать выпуск батарей разной формы, включая тонкие варианты толщиной в 2 мм.

Принцип работы остался прежним. Ионы лития при зарядке батареи перемещаются с катода на анод, а при разрядке с анода на катод. Для удержания заряженных ионов на аноде выступает графит. А для внедрения в катод оксиды кобальта, марганца или ванадия. Ввиду дороговизны кобальта, производители чаще используют различные сплавы на основе кобальта, с целью снижения себестоимости производства.

Вывод

В статье подробно описано, из чего сделаны аккумуляторы для сотовых телефонов. Так же описан принцип работы литий-ионных и литий-полимерных батарей.

Какие у вас остались вопросы? Оставляйте сообщения в комментариях под статьей.

Источник

Схема контроллера литий-ионного аккумулятора

Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки («банки») на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

как устроен аккумулятор для телефона

как устроен аккумулятор для телефонаТиповая схема включения микросхемы DW01-P

Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.

как устроен аккумулятор для телефона

Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

как устроен аккумулятор для телефона

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты в целом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от перезаряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection VoltageVODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.

Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).

как устроен аккумулятор для телефона

Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.

как устроен аккумулятор для телефона

При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.

как устроен аккумулятор для телефона

Чтобы контроллер вновь подключил аккумулятор к «внешнему миру», то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).

Тут возникает весьма резонный вопрос.

Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, можно узнать здесь.

как устроен аккумулятор для телефона

Кроме всего прочего, в функционал микросхем защиты литиевых аккумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

MOSFET транзисторы

Полевой транзистор с изолированным затвором

как устроен аккумулятор для телефона

Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.

MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзисторы J-FET также являются полевыми транзисторами, но управление таким транзистором осуществляется за счёт применения в нём управляющего p-n перехода. Эти транзисторы в отличие от MOSFET имеют немного иную структуру.

Принцип работы полевого транзистора.

Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.

Упрощённая модель полевого транзистора с изолированным затвором.

Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку МДП-транзисторы бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.

как устроен аккумулятор для телефона
Упрощённая модель полевого транзистора с изолированным затвором

Основу МДП-транзистора составляет:

Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.

Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому «+»), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.

Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.

Теперь в двух словах опишем, как это всё работает.

Если между затвором и истоком приложить напряжение плюсом ( +) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.

В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.

Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.

Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в устройство полевого транзистора с изолированным затвором.

Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В транзисторе обеднённого типа в области канала уже присутствуют электроны, поэтому транзистор пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.

О различии MOSFET транзисторов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как МОП-транзисторы обозначаются на принципиальных схемах.

Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.

Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET-транзисторы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или похожую. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука как устроен аккумулятор для телефона.

Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологий изготовления полевых транзисторов удалось избавиться от этой проблемы. Современные полевые транзисторы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.

В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного транзистора.

IGBT транзистор

Биполярный транзистор с изолированным затвором

В современной силовой электронике широкое распространение получили так называемые транзисторы IGBT. Данная аббревиатура заимствована из зарубежной терминологии и расшифровывается как Insulated Gate Bipolar Transistor, а на русский манер звучит как Биполярный Транзистор с Изолированным Затвором. Поэтому IGBT транзисторы ещё называют БТИЗ. БТИЗ представляет собой электронный силовой прибор, который используется в качестве мощного электронного ключа, устанавливаемого в импульсные источники питания, инверторы, а также системы управления электроприводами.

Суть работы IGBT транзистора заключается в том, что полевой транзистор управляет мощным биполярным транзистором. В результате переключение мощной нагрузки становиться возможным при малой управляющей мощности, так как управляющий сигнал поступает на затвор полевого транзистора.

Внутренняя структура БТИЗ – это каскадное подключение двух электронных входных ключей, которые управляют оконечным плюсом. Далее на рисунке показана упрощённая эквивалентная схема биполярного транзистора с изолированным затвором.

История появления БТИЗ.

Впервые мощные полевые транзисторы появились в 1973 году, а уже в 1979 году была предложена схема составного транзистора, оснащенного управляемым биполярным транзистором при помощи полевого транзистора с изолированным затвором. В ходе тестов было установлено, что при использовании биполярного транзистора в качестве ключа на основном транзисторе насыщение отсутствует, а это значительно снижает задержку в случае выключения ключа.

Несколько позже, в 1985 году был представлен биполярный транзистор с изолированным затвором, отличительной особенностью которого была плоская структура, диапазон рабочих напряжений стал больше. Так, при высоких напряжениях и больших токах потери в открытом состоянии очень малы. При этом устройство имеет похожие характеристики переключения и проводимости, как у биполярного транзистора, а управление осуществляется за счет напряжения.

Первое поколение устройств имело некоторые недостатки: переключение происходило медленно, да и надежностью они не отличались. Второе поколение увидело свет в 90-х годах, а третье поколение выпускается по настоящее время: в них устранены подобные недостатки, они имеют высокое сопротивление на входе, управляемая мощность отличается низким уровнем, а во включенном состоянии остаточное напряжение также имеет низкие показатели.

Уже сейчас в магазинах электронных компонентов доступны IGBT транзисторы, которые могут коммутировать токи в диапазоне от нескольких десятков до сотен ампер (Iкэ max), а рабочее напряжение (Uкэ max) может варьироваться от нескольких сотен до тысячи и более вольт.

Условное обозначение БТИЗ (IGBT) на принципиальных схемах.

как устроен аккумулятор для телефона
как устроен аккумулятор для телефона как устроен аккумулятор для телефона
Условное обозначение БТИЗ (IGBT)

На рисунке показано условное графическое обозначение биполярного транзистора с изолированным затвором. Транзистор также может изображаться со встроенным быстродействующим диодом. Также IGBT транзистор может изображаться следующим образом:

как устроен аккумулятор для телефона

Особенности и сферы применения БТИЗ.

Отличительные качества транзисторов IGBT:

Управляется напряжением (как любой полевой транзистор);

Имеют низкие потери в открытом состоянии;

Могут работать при температуре более 100 0 C;

Способны работать с напряжением более 1000 Вольт и мощностями свыше 5 киловатт.

Перечисленные качества позволили применять IGBT транзисторы в инверторах, частотно-регулируемых приводах и в импульсных регуляторах тока. Кроме того, они часто применяются в источниках сварочного тока, в системах управления мощными электроприводами, которые устанавливаются, например, на электротранспорт: электровозы, трамваи, троллейбусы. Такое решение значительно увеличивает КПД и обеспечивает высокую плавность хода.

Кроме того, устанавливают данные устройства в источниках бесперебойного питания и в сетях с высоким напряжением. IGBT транзисторы можно обнаружить в составе электронных схем стиральных, швейных и посудомоечных машин, инверторных кондиционеров, насосов, системах электронного зажигания автомобилей, системах электропитания серверного и телекоммуникационного оборудования. Как видим, сфера применения БТИЗ довольно велика.

Стоит отметить, что IGBT и MOSFET в некоторых случаях являются взаимозаменяемыми, но для высокочастотных низковольтных каскадов предпочтение отдают транзисторам MOSFET, а для мощных высоковольтных – транзисторам IGBT.

Так, например, IGBT транзисторы прекрасно выполняют свои функции при рабочих частотах до 20-50 килогерц. При более высоких частотах у данного типа транзисторов увеличиваются потери. Также наиболее полно возможности IGBT транзисторов проявляются при рабочем напряжении более 300-400 вольт. Поэтому биполярные транзисторы с изолированным затвором легче всего обнаружить в высоковольтных и мощных электроприборах.

Источник

Аккумуляторы для мобильных устройств

Устройство и основные параметры

как устроен аккумулятор для телефона

Сотовые телефоны и переносные компьютеры, радиостанции и радиотелефоны, источники бесперебойного питания, кинокамеры и фотоаппараты, ручные мощные инструменты, медицинские приборы, разнообразное производственное оборудование — вот далеко не полный перечень устройств, нормальная работоспособность которых напрямую зависит от состояния аккумуляторов. В связи с этим, знание характеристик, особенностей и условий эксплуатации различных типов аккумуляторов приобретает особое значение и является залогом безотказной работы мобильных устройств и портативного оборудования.

Если Вы любопытны и обладаете некоторыми навыками по порче игрушек, приобретенными еще в детстве, то уже наверняка познакомились с внутренним устройством своего бывшего в эксплуатации аккумулятора. Что же там внутри? (Не советую разбирать, это связано с риском получения физических повреждений). Вообще то ничего особенного. Круглые или призматические «батарейки», каких навалом в ближайшем магазине, причем по гораздо более низкой цене. Однако первое впечатление — обманчиво. Перед Вами не просто батарейки, а аккумуляторы. И отличаются они от батареек тем, что допускают (в силу обратимости протекающих в них реакций) многократные циклы разряда — заряда. В этом их преимущество перед батарейками, но с другой стороны и «головная боль», которую они приносят в случае потери работоспособности. И если с первыми все просто: купил, вставил, истощились, выбросил и купил новые, то с аккумуляторами дело обстоит сложнее. Для них последовательность действий иная: купил; подготовил к работе; пользуешься, соблюдая правила эксплуатации; и только когда уже совсем невмоготу — покупаешь новый.

Итак, чтобы не было мучительно больно за бесцельно потраченные деньги, ниже информация для любопытных и любознательных на тему: что нужно знать об аккумуляторах для мобильных телефонов и портативных компьютеров.

Устройство

Здесь и далее речь пойдет о никель-кадмиевых (NiCd), никель-металлгидридных (NiMH) и литий-ионных (Li-ion) аккумуляторах.

Любой аккумулятор, как правило, состоит из нескольких единичных элементов, соединенных последовательно для увеличения значения вырабатываемого напряжения и упакованных в общий корпус. С конструкцией единичного элемента аккумулятора, например никель-металлгидридного, с электрохимическими реакциями, проходящими внутри него, и другими полезными сведениями (на английском языке) можно познакомиться на сайте фирмы Panasonic, загрузив файл в формате pdf Overview information on NiMH Batteries in PDF Format — 137KB.

Кроме единичных элементов аккумуляторы на основе никеля содержат внутри тепловой предохранитель и датчик температуры (последний в NiCd аккумуляторах может отсутствовать). Тепловой предохранитель обеспечивает безопасность при больших токах заряда, а выходной сигнал датчика температуры обрабатывается зарядным устройством. В зависимости от значения температуры «грамотное» зарядное устройство обеспечивает различные режимы заряда аккумулятора: быстрый, медленный и переключение от одного к другому.

Литий-ионные аккумуляторы помимо теплового предохранителя и датчика температуры содержат специальную управляющую интегральную схему и управляющие ключи. Все это в совокупности призвано защитить потребителя от физических повреждений в случае нарушения электрических режимов эксплуатации аккумулятора.

ОСНОВНЫЕ ПАРАМЕТРЫ АККУМУЛЯТОРОВ

Да будет Вам известно, что аккумулятор, как электрический прибор, характеризуется следующими основными параметрами: типом электрохимической системы, напряжением, электрической емкостью, внутренним сопротивлением, током саморазряда и сроком службы. Причем, в зависимости от сферы применения на первый план выступают то одни параметры, то другие. Например, аккумулятор для сотовых телефонов должен оцениваться по совокупности значений трех его основных характеристик: реальной емкости, внутреннему сопротивлению и току саморазряда, а аккумулятор домашнего радиотелефона с радиусом действия до 100 метров достаточно оценить только по емкости и саморазряду. При недооценке или игнорировании какого-либо параметра или преувеличении важности одного из них (как правило, емкости) можно оказаться в ситуации «у разбитого корыта».

Напряжение. Напряжение аккумулятора определяется тем устройством, для питания которого он предназначен. Если требуемое значение напряжения не обеспечивается одним элементом, то аккумулятор собирается из нескольких элементов, соединенных последовательно. Например, в сотовых телефонах различных моделей используются аккумуляторы напряжением 3,6 В (1 Li-ion элемент или 3 NiCd, или 3 NiMH элемента), 4,8 В (только 3 NiCd или 3 NiMH элемента), 6 В (только 5 NiCd или 5 NiMH элементов), 7,2 В (2 Li-ion элемента). Таким образом, если в телефоне используются 4 NiMH аккумулятора общим напряжением 4,8 В (как, например, в некоторых последних моделях фирмы Ericsson), то использование в нем Li-ion аккумуляторов невозможно. Напряжение аккумулятора в процессе работы не постоянно. Оно максимально сразу после окончания заряда, а затем в процессе работы или хранения уменьшается. В конце концов, оно уменьшается до такой величины, что сотовый телефон не включается или автоматически выключается. При оценке состояния аккумулятора измерение его напряжения необходимо производить под нагрузкой, на которую он рассчитан.

Электрическая емкость. Номинальная электрическая емкость — это то количество энергии, которым аккумулятор теоретически должен обладать в заряженном состоянии. Данный параметр аналогичен емкости какого-либо сосуда, например, стакана. Так в стандартный граненый стакан можно налить 200 мл воды (по ободок), в конкретный аккумулятор можно закачать также лишь вполне определенное количество энергии. Но определяется это количество энергии (емкость) не в момент закачивания (заливания), а при обратном процессе — разряде (выливании энергии) аккумулятора постоянным током в течение измеряемого промежутка времени до момента достижения заданного порогового напряжения. Измеряется емкость соответственно в ампер-часах (А·час) или миллиампер-часах (мА·час) и обозначается буквой «С». Значение емкости указывается на этикетке аккумулятора или зашифровано в обозначении его типа. Реальное значение емкости нового аккумулятора на момент ввода его в эксплуатацию колеблется от 80 до 110% от номинального значения и зависит: от фирмы-изготовителя, условий и срока хранения и технологии ввода в эксплуатацию. Теоретически аккумулятор, например, номинальной емкостью 1000 мА*час может отдавать ток 1000 мА в течение одного часа, 100 мА в течение 10 часов, или 10 мА в течение 100 часов. Практически же, при высоком значении тока разряда номинальная емкость не достигается, а при низком токе — превышается.

В процессе эксплуатации емкость аккумулятора уменьшается. Скорость уменьшения зависит от типа электрохимической системы, технологии обслуживания в процессе работы, используемых зарядных устройств, условий и срока эксплуатации. Используя ту же аналогию со стаканом, можно сказать, что количество наливаемой в стакан воды будет уменьшаться, если будете наливать воду с большим количеством механических примесей, а сливать — отстоявшуюся. Тогда в стакане постепенно будет накапливаться осадок, уменьшающий его полезную емкость. В аккумуляторе подобный «осадок» образуется в процессе циклов заряда / разряда.

Внутреннее сопротивление. Внутреннее сопротивление аккумулятора (сопротивление источника тока) определяет его способность отдавать в нагрузку большой ток. Эта зависимость подчиняется закону Ома (вспомните курс школьной физики). При низком значении внутреннего сопротивления, аккумулятор способен отдать в нагрузку больший пиковый ток (без существенного уменьшения напряжения на его выводах), а значит и большую пиковую мощность. В то время как высокое значение сопротивления приводит к резкому уменьшению напряжения на выводах аккумулятора при резком увеличении тока нагрузки. Такой коллапс (уменьшение) напряжения характеризует «слабость» внешне хорошего аккумулятора, потому что запасенная энергия не может быть полностью выдана в нагрузку.

Другими словами, все вышесказанное о внутреннем сопротивлении аккумулятора может быть проиллюстрировано следующим образом. Представим себе, что Вам необходимо за час полить садовый участок из бака (аккумулятор), который Вы ранее заполнили водой. При нормальном положении вещей Вы подключаете к сливному крану шланг, полностью открываете кран и поливаете участок в течение часа до тех пор, пока вода в баке не закончится. А теперь предположим, что сливной кран у вашего бака заклинило, открыть его можно только чуть-чуть и вода сочится из него лишь тоненькой струйкой. Вроде бы и вода в баке есть (аккумулятор заряжен), а нормально поливать невозможно. Кран в данном случае играет роль внутреннего сопротивления для бака. Если струя из крана большая, то внутреннее сопротивление бака мало, если — маленькая — внутреннее сопротивление бака большое.

Что имеем практически? Сотовый телефон в режиме ожидания потребляет от аккумулятора небольшой ток и пропускной способности крана его аккумулятора вполне хватает для питания телефона. Как только поступает входящий звонок или Вы начинаете делать исходящий, телефону требуется в десятки раз больше энергии для нормальной работы в режиме передачи, поэтому требуется увеличить пропускную способность крана. Если кран — нормальный, то он пропустит через себя этот увеличенный поток энергии, если его — заклинило, то — нет, и телефон отключается. Это особенно характерно для сотовых телефонов стандартов NMT, AMPS, транковых и обычных радиостанций, портативных компьютеров.

Внутреннее сопротивление аккумулятора зависит от типа его электрохимической системы, емкости, числа элементов в аккумуляторе, соединенных последовательно, и возрастает к концу срока эксплуатации.

Саморазряд. Явление саморазряда в большей или меньшей степени характерно для всех типов аккумуляторов и заключается в потере ими своей емкости после того, как они были полностью заряжены. Для количественной оценки саморазряда удобно использовать величину потерянной ими за определенное время емкости, выраженную в процентах от значения, полученного сразу после заряда. За промежуток времени, как правило, принимается интервал времени, равный одним суткам и одному месяцу. Так, например, для исправных NiCd аккумуляторов считается допустимым саморазряд до 10% в течение первых 24 часов после окончании заряда, для NiMH — немного больше, а для Li-ion пренебрежимо мал и оценивается за месяц. Следует отметить, что саморазряд аккумуляторов максимален именно в первые 24 часа после заряда, а затем значительно уменьшается.

Саморазряд аккумуляторов зависит от качества использованных материалов, технологического процесса изготовления, типа и конструкции аккумулятора. Он резко возрастает при повышении окружающей температуры, повреждении внутреннего сепаратора аккумулятора из-за неправильного обслуживания и вследствие процесса старения.

Срок службы (срок эксплуатации) аккумулятора. Его принято оценивать по количеству циклов заряда / разряда, которое аккумулятор выдерживает в процессе эксплуатации без значительного ухудшения своих основных параметров: емкости, саморазряда и внутреннего сопротивления. Срок службы зависит от многих факторов: методов заряда, глубины разряда, процедуры обслуживания или его отсутствия, температуры и электрохимической природы аккумулятора. Кроме того, он определяется временем, прошедшим со дня изготовления, особенно для Li-ion аккумуляторов. Аккумулятор, как правило, считается вышедшим из строя после уменьшения его емкости ниже 80% от номинального значения.

При написании статьи использованы материалы, любезно предоставленные г-ном Isidor Buchmann, основателем и главой Канадской компании Cadex Electronics Inc. [1].

Более подробная информация на русском языке об аккумуляторах для мобильной техники связи, компьютеров и других портативных приборов, советы по эксплуатации и обслуживанию приведены в [2]

ССЫЛКИ

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *