как работает голограмма на телефоне
3D голограмма на телефоне
В этой статье мы расскажем как сделать своими руками 3D-проектор, чтобы получить голографическое изображение! Причем это сделать можно из подручных средств, которые можно найти дома: телефона и коробки от CD дисков.
Способ очень простой. В итоге получим объемное видеоизображение, которое удивит не только ребенка, но и любого взрослого.
Готовую 3D голограмму для телефона меньше чем за 1.5$ можно купить по ссылке Aliexpress.com
Для изготовления 3D голограммы нам понадобятся:
Берем любую бумагу и начертим на ней трапецию с такими пропорциями: нижняя сторона – 6 см, верхняя сторона – 1 см, высота – 3,5 см. Вырезаем образец.
Разбираем коробку от CD дисков. Потом прикладываем образец из бумаги на пластик и обводим маркером трапецию, и вырезаем по контуру ножом. Делаем трапеции в количестве 4 шт.
После изготовления трапеций, полосками из скотча (можно клеем моментом) соединяем 4 детали боковыми сторонами как показано ниже на картинке.
Теперь только остается воспроизвести специальное видео через интернет или его загрузить в смартфон.
Сборка таких видео по 3D голограммам можно найти в YouTube по ССЫЛКЕ
После установите изготовленную конструкцию на смартфон и насладитесь захватывающим зрелищем!
Спасибо что дочитали статью до конца, надеюсь информация вам пригодиться)
Многобукфф
Vladislav’s personal blog site
Создаем голограмму на мобильном телефоне
В плане развития мелкой моторики рук, а заодно и навыков работы с различными материалами, я провел небольшой домашний мастер класс по созданию простеньких голограмм при помощи мобильного телефона или планшета и прозрачного поликарбоната. В сети я нашел два варианта создания голограмм, но оба они используют одни и те же принципы получения трехмерной оптической иллюзии. Возможно, что если как следует покопаться, то можно найти еще варианты. Поэтому, если вдруг вам удалось нагуглить еще способы для создания простой голограммы при помощи экрана смартфона, то смело отписывайтесь в комментарии с соответствующими ссылками.
Итак, оба варианта используют особенности оптики, а именно преломление лучей света при переходе между средами с различной оптической плотностью, да побьют меня оптики палками за дилетантские термины, но я продолжу. Суть в том, что при прохождении луча света от экрана мобильного телефона, планшета, дисплея монитора или вообще телевизора через границу воздуха и прозрачного поликарбоната происходит частичное отражение света. Именно благодаря этому отражению и создается эффект голографического, т. е. полностью объемного, изображения. Исходя из этого можно сообразить, что для создания голограммы нужен прозрачный поликарбонат. А где его взять?
В современном мире отличным источником поликарбоната могут служить обычные коробки для CD дисков, которые можно безвозвратно позаимствовать из домашней аудиотеки или просто купить в компьютерном или стоковом магазине. В таких магазинах, как правило, продаются записываемые CD или DVD в упаковке «на шпинделе». А заодно, дабы заработать еще немного денег, магазины продают отдельно коробочки к ним. Лучше всего использовать прозрачные, неокрашенные коробочки, дабы не терять драгоценную яркость экрана, изображение при этом будет наилучшим из возможного.
Вариант 1. Holho — пирамидальная голограмма
Для пирамидальной голограммы, даже придумали особое название Holho. Суть данной техники в трансляции сразу четырех изображений на слегка усеченную пирамиду, поставленную «на попа», т. е. вершиной вниз, на экран смартфона. При проигрывании специально подготовленного ролика на экране телефона, изображение отражается от граней пирамиды и создается полная иллюзия парящего в воздухе объекта. Суть пирамидальной голограммы в том, что каждое из изображений проецируется на свою грань, а при просмотре наблюдатель видит сразу все четыре изображения, сведенные в единую трехмерную картинку гранями пирамиды.
Пирамида собирается просто, не нужно оканчивать курсы ораторского мастерства Феликса Кирсанова и Высшую Школу Экономики, дабы вырезать из крышечки от коробочки диска требуемые заготовки. Нужно их всего четыре штуки, а вырезаются они по шаблону, любезно заготовленному мною.
| Как собрать пирамидальный голографический проектор. |
Сам шаблон для вырезки доступен по этой ссылке. При печати необходимо точно выбрать размер бумаги и включить печать в настоящем размере.
Вырезать поликарбонат не составит труда, если распечатанный шаблон подкладывать под крышечку, а затем делать глубокие прорези на нем по линиям при помощи острого обойного ножа. Сделанный таким образом рез, затем с легкостью позволяет отломить ненужный участок крышки. Только рез нужно делать на всю ширину крышки, иначе надлома не cлучится. Вырезанные заготовки можно склеить при помощи суперклея или просто скрепить их липкой лентой типа Scotch.
| Одно из демонстрационных видео. |
Для получения эффекта голограммы необходимо перебраться в помещение с приглушенным светом, установить на экране смартфона пирамиду, острием вниз, отцентрировать ее по меткам на видео. И в принципе все, можно наслаждаться просмотром чудесных образчиков «домашней магии».
| И еще одно демонстрационное видео. |
На YouTube загружено порядочное количество демонстрационных видео под Holho, поэтому можно смело подобрать даже что-то совсем необычное. Более того, уже появились промышленно изготовленные и приятно выглядящие конвертеры пирамидальной технологии Holho. И помните, что в качестве источника видео для голограммы может выступать не только экран телефона или планшета, но и любой другой источник, тут важно сопоставить размер пирамидки и экрана.
Вариант 2. Фронтальная линейная голограмма
В качестве альтернативы Holho можно упомянуть линейную голограмму, которая создается посредством проецирования изображения на последовательно установленные отражатели. Если пирамидальная голограмма выглядит голограммой с любой стороны, то линейная позволяет насладиться нереальным эффектом только с одной стороны, с фронтальной. Суть устройства для воспроизведения линейной голограммы заключается почти в том же самом, что и у пирамидальной, но здесь производится трансляция изображения на несколько, обычно три, мини экранчика из прозрачного поликарбоната. Экранчики устанавливаются под углом в 45 градусов и друг за другом. Сами экраны различаются по высоте, что добавляет еще большего реализма в получаемое изображение.
| Как собрать фронтальный голографический проектор. |
Для изготовления устройства идеально подходят те же самые коробочки от компакт-дисков, только тут в ход они идут полностью, за что отдельное спасибо автору устройства. Разрезать коробку можно применяя методику, использованную при построении пирамидального устройства, только отмерять размеры экранов придется самостоятельно. Да и для фиксации частей устройства применяется термо-клей, а не липкая лента. Но при наличии хотя бы минимально прямых рук, все получается с первого раза. При сборке, немного придерживайте экраны, пока клей полностью не затвердеет.
| Фронтальная голограмма — видео. |
Для воспроизведения голограммы необходимо положить устройство линейной голограммы на экран планшета или более крупное устройство. Кстати, и линейную, и пирамидальную голограммы можно использовать так как в оригинальном видео, так и в перевернутом состоянии. Эффект от этого не меняется, хотя видео может оказаться перевернутым.
| Фронтальная голограмма — видео. |
Если сравнивать оба устройства, то Holho версия мне нравится больше, поскольку позволяет создать голограмму без каких-либо ограничений по количеству планов сцен. В линейной версии, пользователю доступна лишь несколько уровней объема, равных количеству установленных поликарбонатных экранов. При трех экранах — соответственно три уровня глубины сцены.
| Фронтальная голограмма — видео. |
Другими словами, если версия Holho создает действительно объемное изображение, парящее в воздухе, то вариант с фронтальной линейной голограммой больше напоминает эффект 3D-телевидения на плоском экране. Хотя, безусловно, тот и другой варианты смотрятся неплохо и их стоит собрать оба, благо ничего сверхординарного для создания подобной игрушки не требуется, а времени на сборку сразу двух устройств вряд ли уйдет более часа.
Опубликовано 10.12.2015 автором kvv в следующих категориях:
DIY
Голограмма на смартфоне. Обман века или будущее уже здесь?
В июле 2017 года производитель кинокамер «RED» анонсировал новый смартфон «RED HYDROGEN»
Сама новость про RED и смартфоны обескуражила многих обывателей: «Серьезно? Они же камеры делают — какие еще смартфоны. »
Но ещё более неожиданным стало заявление о том, что смартфон будет поддерживать голограммы!
Многие решили, что ребята сошли с ума, либо это какой то обман века, странный пиар или…
Неужели это возможно? Может не за горами и световой меч?
Но не так как нам рисует голливуд — проекцию принцессы Леи мы не увидим. Скорей всего вы просто не знаете что такое голограмма потому что смотрели много фантастики вместо изучения физики. Как раз для таких людей и написана эта статья — просто о сложном.
Голография vs Фотография
Голография — набор технологий для точной записи, воспроизведения и переформирования волновых полей оптического электромагнитного излучения, особый фотографический метод, при котором с помощью лазера регистрируются, а затем восстанавливаются изображения трехмерных объектов, в высшей степени похожие на реальные.
Скорей всего понимания не прибавилось — лучше посмотрите видео
Если вам показалось, что это зеркала и банки от фанты за стеклом — пересмотрите еще раз.
Это и есть настоящие голограммы. Никакой хитрости — только наука.
Как это работает?
Для начала ответим на вопрос — как мы вообще воспринимаем объем? Это возможно благодаря тому, что у нас два глаза — каждый видит объект с разных сторон.
Мозг обрабатывает эти две немного разных картинки и строит в нашем сознании одну объемную модель. Благодаря этому мы можем оценивать расстояние до предметов просто посмотрев на них — мозг автоматически оценивает напряжение глазных мышц и определяет расстояние с довольно высокой точностью.
Глаз как оптический прибор
Камера работает на тех же принципах что и человеческий глаз — поэтому рассмотрим глаз как оптический прибор.
Глаз реагирует на свет, а свет, как известно — это электромагнитная волна, точно такая же как, например, вайфай — только более высокой частоты.
Для того чтобы глаз что то увидел — в него из этой точки должен прийти свет, когда мы видим какой то объект — мы регистрируем отраженный этим объектом во все стороны свет, который отражает во все стороны каждая точка поверхности
Каждая точка поверхности отражает свет во все стороны!
Это крайне важный принцип, который нужно понять — через каждый кусочек пространства проходит целая мешанина различных волн в самых разных направлениях, но видим мы только то, что попадает к нам в глаз через зрачок.
Из всей мешанины волн в глаз/фотоаппарат попадает лишь маленький кусочек от волны, который проскочил через зрачок.
Волна уходит дальше, но мы этого не видим потому что наш глаз не может регистрировать волны которые не идут прямо в него, но это не значит что их нет!
Когда мы поворачиваем голову, чтобы увидеть объект находящийся сбоку — в наш глаз начинают попадать кусочки волн, отраженных от этого объекта.
Эти волны всегда были тут, просто они невидимы для глаза, пока не будут идти в него спереди.
По тому же принципу работает фотоаппарат/кинокамера — из всего многообразия волн проходящих во все стороны через пространство — фиксируется только часть, которая идет в одном направлении — поэтому фотографии выглядят плоскими — это всего лишь малая часть изначальной информации
Голография
Теперь наконец можем перейти к принципу создания объемных снимков, рассмотрим часть пространства, обведенную фиолетовым, представим что поставили перед объектом стекло.
Если бы нам удалось каким то образом заморозить/запомнить картину волн, проходящих через это стекло, а затем воспроизвести в точности все амплитуды, частоты и фазы — тогда бы мы сохраняли не маленький зеленый кусочек от волны, который несет информацию только об одном направлении, а целую картину всех волн, которая содержит информацию обо всех возможных углах обзора.
Если не видно разницы.
Если из стекла выходит точно такая же картина из волн, которые испускал объект на момент «запечатывания» этой картины — визуально будет невозможно отличить такую «фотографию» от реального объекта, причем объект будет виден под всеми углами так как восстановлена вся картина волн, проходивших через пространство
Камера видит только в одном направлении — так что для того чтобы зафиксировать весь фронт волны нам нужно сделать снимки во всех направлениях, а потом объединить их в одну объемную картину — на таком принципе основано 3D сканирование.
Такой метод съемки 3D объектов аналогичен FDM 3D печати пластиком, которые на самом деле печатают в 2D просто много много раз — на качественном уровне это «костыль»
Реализация
Дело за малым — осталось всего лишь придумать как запечатать в пространстве все радиоволны, которые через него проходят, а затем восстановить, тут я пожалуй не буду углубляться в технические детали — главное понять основной принцип. (Если будет интерес — есть возможность снять голограмму в лаборатории спектроскопии, тут много нюансов — так что это тема для следующей статьи).
Останавливаем свет
Проблема в том, что волны находятся в постоянном движении. А если мы хотим зафиксировать картину в пространстве — мы должны прореагировать с каким то фоточувствительным материалом в течение некоторого времени и запечатываемая картина должна быть неподвижна на это время.
Делая обычную фотографию — мы не останавливаем свет, мы вырезаем узкое направление вдоль которого экспонируем матрицу лучами с постоянной амплитудой, каждый из которых соединяет точку объекта и пиксель на матрице.
Мы хотим запечатлеть все направления разом, и у нас нет глаза Агамото, чтобы заморозить время — придется думать головой.
Хорошо что это уже сделал еще в 1947 году Денеш Габор (тысяча девятьсот сорок седьмом году, Карл!). За что получил нобелевскую премию.
Суть в следующем — если сложить две волны с одинаковой частотой и разными направлениями, то в местах пересечения максимумов и минимумов этих волн возникнет стоячая волна — виртуальная волна(так как световые волны друг на друга не действуют), которая является суммой двух бегущих волн одинаковой частоты. За счет этого можно засветить неподвижную картину из пересечений двух волн в фотопластинке.
Засвечивая одну пластинку тремя цветами опорных волн — красным синим и зеленым — мы получим полноцветную голограмму, не отличимую от оригинала.
Если теперь убрать предмет и посветить на пластинку опорной волной — из пластинки выйдет точная копия волн, которые создавал сканируемый предмет.
Технологические требования
Так как очень важно, чтобы частоты предметной и опорных волн были одинаковые — необходим невероятно стабильный источник света, чтобы стоячая волна оставалась неподвижной — при небольшом различии частот — волна начнет двигаться и голограмма смажется.
Зеленый свет
Такой источник существует — он называется лазер. До изобретения лазера в 1960 году голография не имела коммерческого развития, для записи использовались газоразрядные лампы.
В 2009 году был изобретен первый в мире полупроводниковый зеленый лазер (красный и синий уже были). До этого зеленые лазеры использовали удвоение частоты инфракрасного лазерного диода, пропущенного через нелинейный оптический кристалл, удваивающий частоту. Однако данная конструкция имеет крайне низкий кпд, высокую стоимость, сложность и т.д.
Изобретение полупроводникового зеленого лазера дало зеленый свет разработке миниатюрных RGB лазерных проекторов. Прошло уже 9 лет — вполне достаточное время для перехода технологии в промышленное использование- и сейчас мы начинаем наблюдать самых активных участников рынка, скоро будет еще больше классных и интересных продуктов
Разрешающая способность
600нм! То есть разрешающая способность как минимум 1666 мм^-1.
Если при фотографировании — каждой точке матрицы соответствует точка на объекте, то в голограмме — на каждую точку матрицы падает свет от всех точек объекта, то есть каждая часть голограммы содержит информацию о всем объекте.
Голографические смартфоны
Когда в смартфонах появится голографическая Анна Семенович или хотя бы принцесса Лея. Изучаем перспективные технологии.
Каждый любитель фантастики смотрел фильмы о будущем, в которых некий оператор водит руками в воздухе, передвигая голографические объекты для выполнения утилитарной функции. В настоящем когнитивном 3D-пространстве, в космосе, навигационные карты должны быть 3D, иметь глубину и быть связанными с реальным объемом пространства, не меняя его истинное положение относительно наблюдателя при демонстрации.
В любом случае, даже если у нас еще нет звездолетов, голографическое изображение имеет значительные перспективы как для производителей, так и для рядовых пользователей. Первые смогут повышать продажи при помощи голографической рекламы, а вторые – получать передовой развлекательный контент. В том случае, если технологию удастся реализовать в конечном потребительском устройстве – смартфоне. Для этого необходимы две вещи – некий рабочий объем для развертывания самой голограммы и система датчиков, которая позволяла бы управлять иллюзорными объектами с помощью рук. И если система управления (аппаратный и программный интерфейс) давно готова, то технология трансляции голограммы топчется на месте уже не первую сотню лет. Но обо всем по порядку.
Система управления
Реакция ПО на вождение в воздухе руками принципиально не требует никаких научных прорывов и давно уже отработана на концептах и потребительских устройствах. Подходы бывают самые разные, начиная от применения микроскопических радаров и ИК-датчиков и заканчивая программным обеспечением для камеры, которая отслеживает движение. Наиболее успешным решением вопроса дистанционного управления, как мне кажется, является применение ИК-сенсора в Sony Xperia Touch. Вы можете освежить память о нем, если прочитаете обзор от Сергея Кузьмина или просто посмотрите это видео.
Представленный в далеком 2017 году, этот проектор на Android OS был верхом технологий и внутренне мало чем отличался от передовых на то время смартфонов. Несмотря на несомненный успех, второе поколение подобных устройств так и не вышло, возможно, из-за высокой цены (конечная цена в России крутилась вокруг 80 000 рублей) и низкого по сравнению с умными телевизорами качества изображения. Тем не менее, система управления иллюзорным интерфейсом работала прекрасно и не вызвала нареканий ни у кого.
Как сделать 3D голограмму для вашего смартфона?
Комплектующие
Для нашего устройства нам понадобится простой набор комплектующих:
Как работает 3D-голограмма из пирамиды?
Создаем пирамиду для 3D-голограмм
1. Распечатайте шаблон, показанный ниже, на листе бумаги формата A4.
ПРИМЕЧАНИЕ. Если у вас нет доступа к принтеру, вы также можете создать шаблон самостоятельно. Нарисуйте основную «трапецию» на листе бумаги, используя размеры на рисунке выше. Параллельные стороны = 1 см и 6 см, две другие стороны равны 4,5 см каждая. Вы всегда можете удвоить или утроить размеры пропорционально для использования на большом дисплее.
2. Обведите форму на пластиковом листе, используя линейку и ручку. Для трапециевидного шаблона выделите четыре аналогичных контура на пластиковом листе. Теперь аккуратно вырежьте контуры режущим лезвием и линейкой. Постарайтесь сделать свои разрезы как можно более точными для создания более идеальной пирамиды.
3. Если вы использовали шаблон распечатки: очень легко надрежьте красные края с помощью режущего лезвия. Это позволит вам лучше сложить края и сформировать форму пирамиды. Склейте открытые края листа, используя прозрачную ленту.
Если вы использовали трапециевидный шаблон: соедините четыре края, чтобы сформировать форму пирамиды. Соедините их. В любом случае, в итоге у вас будет пирамида, подобная той, что показана ниже.
4. Вот и все! Вы сделали себе пирамиду для будущих голограмм! Все, что вам нужно сделать сейчас, это воспроизвести голограмму на вашем телефоне. Поместите голограмму в центре экрана, как показано на рисунке ниже, и наслаждайтесь шоу. Не забудьте выключить свет в комнате, прежде чем начать воспроизведение видео.



















