Как перевести квт в экм
Как перевести ЭКМ в кВт?
Подскажите, как перевести экм в киловатты.
Для того чтобы посчитать сколько лошадиных сил в киловаттах, нужно эти киловатты умножить на коэффициент равный примерно 1.36 (1,35962162 если быть точным), тем самым получаем, что в 97 киловаттах 131.92 лошадиных силы
Сечение провода выбирается по силе тока, проходящего по проводнику. Сила тока прямо пропорциональна напряжению и обратно пропорциональна мощности. Рассчитывается по формуле I=P/U, где I сила тока, Р- мощность в ваттах и U соответственно напряжение в вольтах.
Если берется обычная бытовая однофазная сеть, то сила тока при такой нагрузке будет практически 23 А. Из спецификации проводов (кабелей, шнуров) по ПУЭ можно выбрать сечение.
Из таблицы видно, что сечение жилы не может быть меньше 2.5 мм для меди и 4 мм для алюминия.
Тарифная сетка очень большая, но это наиболее «популярные» тарифы.
Для уточнения 1$=8,2 грн
Если перевести в просто деньги за месяц, то семья из 3-4 человек, живущая в городской квартире платит за электроэнергию около 8-10$/месяц.
Как перевести квт в экм
Сколько выделяется тепла трубами? Расчет теплоизоляции труб. Расчет регистров отопления.
У многих сантехников рано или поздно возникает один интересный вопрос:
На такой вопрос нет внятного ответа! В интернете и в учебниках по теплотехнике тоже нет нормального объяснения!
Я решил проделать свое расследование и раскрыть тайну расчетов теплопотерь трубопровода! Также объясню, как рассчитать теплоизояцию трубопровода.
Чтобы это понять рассмотрим регистровые отопительные приборы.
Регистровый отопительный прибор
На их основе были разработаны расчеты тепловыделения (теплоотодачи). То есть когда-то давно были произведены специальные опыты для получения тепла от трубы. Данный метод расчетов был придуман для того чтобы рассчитать теплопотери трубы при естественной циркуляции. Как известно раньше система отопления с естественной циркуляцией была простой трубой проложенной по периметру наружных стен дома.
Система отопления с естественной циркуляцией
В этой статье я для Вас открою методы расчетов потерь тепла трубами, для передачи тепла. Таким методом Вы сможете рассчитать даже плинтусную систему отопления. Это когда отопительным прибором является трубопровод, расположенный вдоль стены отапливаемого помещения.
Как проводились опыты по расчету теплопотерь трубы?
Использовались гладкотрубные отопительные приборы (Одиночная и одна над другой):
Подбирался определенный диаметр трубы. Через трубу производился расход теплоносителя. Полученные данные о тепловой энергии заносились в таблицу для каждого диаметра.
Для расчетов был придуман специальный параметр: ЭКМ
Расшифровка ЭКМ. Эквивалентный квадратный метр
Разность 64,5 градусов найдена таким образом: ((95 + 70)/2)-18=64,5
435 ккалорий = 506 Вт, 1 калория = 0,001163 Вт.
435000 калорий/час = 506 Вт/час
1 ЭКМ = 506 Вт при условии, что разность температур теплоносителя и воздуха равна 64,5 градусов Цельсия.
Нужно отопить помещение с теплопотерями 2000 Вт. Трубу использовать в один ряд горизонтально вдоль периметра помещения длиной 18 метров. Труба стальная. Температура воздуха в помещении 20 градусов. Рассчитать какой диаметр трубы применить к данному помещению?
Длина трубы = 5+4+5+4=18 м.
То есть средняя температура теплоносителя будет: 20+64,5=84,5 градусов
Подача: 89,5 градусов
Обратка: 79,5 градусов
Мы примем тот факт, что температура поверхности трубы равна температуре теплоносителя. Для практических примеров систем водяного отопления очень даже подходит. Термическое сопротивление стальной трубы очень мало и обычно может не включаться в расчет.
P.S. Мелочи будите считать, когда будите защищать докторскую диссертацию!
Находим ЭКМ для теплопотерь помещения 2000 Вт
2000 Вт делим на количество метров трубы 18 м. получается 111 Вт на метр трубы.
435 ккалорий = 506 Вт, поэтому 111Вт/м делим на 506Вт, получается 0,219 ЭКМ.
Согласно задаче: один ряд. Сверяясь по таблице, нам подходит наружный диаметр трубы 50мм.
Если нам необходимо уменьшить температуру теплоносителя. То есть уменьшить разницу температур, то на помощь приходит такая таблица:
Зависимость теплоотдачи от температурного напора.
Давайте примем, что температура теплоносителя или поверхности трубы будет равна 60 градусов, тогда разница температур будет равна: 60-20=40 градусов.
При температурном напоре в 40 градусов, получается 270 кКалорий. ЭКМ = 0,26
Поэтому, 0,26*270=70,2 кКалорий
Ответ: Диаметр 50 не подходит для температурного напора в 40 градусов.
Чтобы найти диаметр необходимо выполнить следующее:
1. Находим кКалории при температурном напоре в 40 градусов = 270
3. 2000 Вт делим на 18 метров = 111 Вт
4. 111 / 314 = 0,35 ЭКМ
5. Сверяемся по таблице, подходит 70мм
Ответ: Труба с диаметром 70мм.
Существует другой расчет.
Температурный напор 40 градусов умножаем на 2 кКал/градус = 80 ккалорий/час * 0,9 = 72 ккалор/час
Сколько реальных кВт тепла в одной секции радиатора
Обновлено: 11 февраля 2021.
Сколько кВт в 1 секции чугунного, биметаллического, алюминиевого или стального радиатора? Реальное количество киловатт, которое пишут производители, не соответствует действительности. А это очень важно! Используя завышенные данные вы не сможете рассчитать количество секций.
На рынке представлены четыре вида батарей отопления – чугунные, биметаллические, алюминиевые и стальные. Они отличаются дизайном, объемом, размерами и стоимостью. Но прежде всего вам важно знать, их теплопроизводительность – от этого зависит, насколько хорошо они будут обогревать помещение.
Что нужно знать про мощность радиаторов?
Теплоотдача радиатора зависит от температуры теплоносителя и воздуха в помещении. Чем больше эта разница, тем лучше он отдает тепловую энергию.
Если в помещении 0 градусов, то батарея будет остывать быстрее, чем если бы в комнате было +24. Соответственно – он отдает больше тепла. Получается, при 0 градусов мощность отопительного прибора больше.
Производители часто заявляют завышенные технические характеристики. Они показывают мощность для разницы температур в 65-70 °С. А в реальности перепад температур составляет 35-50 градусов.
Поэтому, если вы видите в инструкции тепловую мощность секции в 200 Вт при ΔТ = 70, реально она составляет 150-160 Вт (ΔТ обозначает перепад температур).
Зная значение реальной мощности можно подсчитать необходимое количество секций в онлайн-калькуляторе.
Сколько кВт в одной секции алюминиевого радиатора
Тепловая мощность секции алюминиевого радиатора зависит от объема воды, которая находится в ней. Стандартные объемы – 0,35 и 0,5 л.
Алюминиевые батареи отдают тепло на 50-60% за счет излучения и на 40-50% в виде конвекции. Отсекатель воздуха усиливает конвекцию на 20-25%, что повышает теплоотдачу.
При температуре воздуха 20-24 °С и воды в контуре 65-70 °С тепловая мощность одной алюминиевой секции составляет:
Точное количество теплоотдачи сложно назвать – оно зависит от особенностей конструкции, диаметра труб, толщины ребер. На производительность влияет тип подключения батареи, скорость прокачки воды, загрязненность внутренних поверхностей.
Сколько кВт в одной секции чугунного радиатора
Производительность тепла чугунного радиатора зависит от объема воды, толщины стенок, наличия ребер, высоты и ширины секции. Существует несколько стандартных моделей чугунных батарей, заявленная теплоотдача одной секции которых составляет:
В классификации первое число обозначает ширину вертикального чугунного протока, второе – ее высоту.
Современные чугунные батареи отличаются от стандартных изделий марки МС. Они могут иметь другие размеры и дизайн, есть модели с отсекателями воздуха. Производители заявляют производительность одной секции в пределах от 150 до 220 Вт.
Если показатели тепловой мощности приводятся для разницы температур ΔТ в 60-70 градусов, они отличаются от реальных.
Для батарей с температурой воды 55-60 °С реальная производительность составит 75-85%, для батарей с температурой воды 65-70 °С – порядка 85-90% от указанной в спецификации производителя.
Сколько киловатт в одной секции биметаллического радиатора
Биметаллические радиаторы по внешнему виду сложно отличить от алюминиевых. Они также могут быть оборудованы отсекателями воздуха, а уровень теплоотдачи в основном зависит от высоты.
Как и в случае с алюминиевыми, данные в спецификациях изготовителей отличаются от реальных. Соответственно, чтобы однозначно ответить на вопрос сколько квт в 1 секции биметаллического радиатора, нужно знать все условия. Поэтому приводим информацию для температуры воды в контуре 65-70 градусов.
Тепловая мощность секции биметаллического радиатора отопления без отсекателей воздуха:
Сколько кВт одной секции биметаллического радиатора с отсекателями воздуха:
Радиатор стальной: сколько киловатт в 1 секции
Стальные радиаторы принципиально отличаются от чугунных, алюминиевых и биметаллических. Они изготавливаются не отдельными секциями, а в виде цельного нагревательного прибора.
Тепловая производительность стального радиатора зависит от его высоты, ширины, количества конвекторов. Различают три типа радиаторов:
Для удобства приводим таблицу тепловой мощности стальных радиаторов (значения приведены в Вт).
Как и в предыдущем случае, приведенные значения номинальные. Для теплоносителя температурой 55-60 °С реальная теплоотдача составит 75-85%, для 65-70 °С – 85-90%.
В статье мы приводим реальные значения, сколько киловатт тепла может давать одна секция радиатора. Они меньше чисел, указываемых производителями, но мы не обманываем наших читателей.
Не забудьте поделиться публикацией в соцсетях!
конвектор перевести в экм
Инженерные системы
Монтаж, ремонт и обслуживание котлов и колонок
Отопительные приборы и арматура
Отопительные приборы предназначены для обогрева помещений, причем теплота воздуху и ограждениям помещений передается конвекцией и излучением (радиацией). По преобладающей форме передачи теплоты приборы подразделяют на радиационные, конвективные и конвективно-радиационные. В водяных и паровых системах отопления в основном применяются конвективно-радиационные и конвективные приборы.
Наиболее распространенные типы отопительных приборов: радиаторы отопления (секционные и панельные), конвекторы (с кожухом и без кожуха), ребристые трубы, гладкотрубные регистры, отопительные панели и приборы динамического отопления – вентиляторные конвекторы и децентрализованные нагреватели (доводчики).
В зависимости от использованных при изготовлении отопительных приборов материалов они бывают металлические – из чугуна, стали, алюминия и его сплавов, латуни, меди или комбинации этих металлов, неметаллические – из керамики, фарфора, стекла, бетона и полимерных материалов и комбинированные – например, в виде бетонных панелей с замоноличенными в них трубчатыми регистрами из стали, стекла или полимерных материалов.
По высоте отопительные приборы делят на высокие (высотой более 650 мм), средние (более 400 мм до 650 мм), низкие (более 200 мм до 400 мм) и плинтусные (высотой 200 мм и менее); по глубине в установке (с учетом расстояния от прибора до стены) – малой глубины (до 120 мм включительно), средней глубины (более 120 мм до 200 мм) и большой глубины (более 200 мм).
По тепловой инерции отопительные приборы подразделяют на малоинерционные, имеющие небольшую массу и вмещающие малое количество воды (например, конвекторы), и инерционные массивные, вмещающие значительное количество воды (например, чугунные радиаторы, бетонные панели).
До недавнего времени отопительные приборы характеризовались площадью эквивалентной поверхности нагрева в экм. За 1 экм принималась площадь эквивалентной поверхности нагрева, передающей тепловой поток в 506 Вт при Ө = 64,5°С и М = 17,4 кг/(ч•экм) для радиаторов и ребристых труб или 300 кг/ч для конвекторов при движении теплоносителя по схеме “сверху вниз”.
Для секционных радиаторов и конвектора без кожуха 1 экм = 0,56 кВт, для конвекторов с кожухом 1 экм = 0,57 кВт.
Секционный радиатор представляет собой конвективно-радиационный прибор, состоящий из отдельных колончатых элементов – секций с каналами, обычно эллипсообразной формы. Такой отопительный прибор передает от теплоносителя в помещение радиацией около 30 %всего количества теплоты, остальное – конвекцией.
Секции радиатора отливают из чугуна, алюминия или его сплавов либо изготовляют из стали, штампуя половинки секций и сваривая их затем между собой. Секции соединяют на ниппелях – чугунных из ковкого чугуна или стальных с прокладками из термостойкой резины (при температуре теплоносителя до 130°С) или паронита (при температуре свыше 130°С). Секции стальных радиаторов соединяют также на сварке.
Ниппеля, имеющие с одной стороны правую резьбу, с другой – левую, одновременно ввинчивают в две смежные секции вверху и внизу и тем самым стягивают секции между собой: в заводских условиях – с помощью механизма ВМС-11IM, на стройке – специальным ключом. В ниппельные отверстия крайних секций вверху и внизу ввинчивают пробки глухие или с отверстиями диаметром 10, 15 или 20 мм (левой и правой резьбой) – для присоединения радиатора к теплопроводам.
Разработка проектов систем теплого пола монтаж оборудования.
Перевод экм в квт для конвектора комфорт
Автор Ёветлана задал вопрос в разделе Строительство и Ремонт Вопрос к сметчикам и не только, по поводу единицы измерения 100 ЭКМ в расценке на установку
Особенности радиаторов из чугуна
Монтаж батарей отопления – это не просто дорогое и хлопотное дело, но и еще очень ответственное. Так как эти приборы устанавливаются с надеждой на их продолжительную службу, то к выбору модели подходят со всей серьезностью. Большое любопытство вызывают у населения батареи нового поколения из чугуна.
Сегодня на строительных ранках можно встретить как советские чугунные радиаторы отопления, технические характеристики которых остались неизменными, так и новые модели, обладающие другими параметрами.
Позитивными качествами этих обогревателей являются:
Внутреннее устройство чугунного радиатора отопления отечественного производства таково, что его стенки имеют шероховатости. Это чревато тем, что теплоноситель встречает на своем пути препятствия, и как следствие, тормозит, вызывая снижение теплоотдачи и оставляя на них мусор. В импортных изделиях внутренняя поверхность абсолютно гладкая, и это способствует не только эффективному нагреву прибора, но и продлению его эксплуатационного срока.
Если упоминать о негативных сторонах чугунных батарей, то их всего два:
В остальном, настоящей альтернативой чугунным батареям, особенного нового поколения, являются биметаллические конструкции, но их стоимость заставляет задуматься, насколько они рентабельны в пятиэтажках.
Эквивалентная нагревательная поверхность прибора
С целью получения единого теплотехнического и производственного показателя в нашей стране в 1957 г. было введено измерение теплоотдающей поверхности всех отопительных приборов в условных единицах площади. За условную единицу площади был принят квадратный метр эквивалентной нагревательной поверхности (м 2 энп) или, короче, эквивалентный квадратный метр (экм). Такое измерение площади нагревательной поверхности стимулирует выпуск совершенных в теплотехническом отношении приборов.
Эквивалентным квадратным метром называется такая площадь теплоотдающей поверхности стандартно установленного отопительного прибора, через которую при средней температуре теплоносителя в приборе 82,5°С в воздух с температурой 18°С передается тепловой поток, равный 506 Вт (435 ккал/ч). За стандартную принимается открытая установка прибора у наружной стены с односторонним присоединением к трубам.
При расчетной разности температуры воды 95-70°C и температурном напоре, равном ((95+70)/2)-18=82,5-18=64,5°С, для передачи в помещение 506 Вт или 506*3,6 кДж/ч (435 ккал/ч) необходимо в расчете на 1 м 2 энп пропустить через отопительный прибор воды в количестве
G=(506*3,6)/((4,187*(95-70))=17,4 кг/(ч м 2 энп);
G=435/(1*(95-70)) =17,4 кг/(ч м 2 энп).
Это, в частности, испытательный расход воды для 1 м 2 энп секционного радиатора, на который делалась ссылка в пояснении к формуле:
Выпускавшийся в 1957 г. секционный радиатор типа H-136 (его строительная глубина 136 мм, монтажная высота 500 мм) был принят за эталон. Через один квадратный метр внешней физической поверхности эталонного радиатора Н-136 (площадь поверхности четырех секций) при испытании в стандартных условиях (испытывался радиатор, состоящий из восьми секций) передавался в помещение тепловой поток, равный как раз 506 Вт (435 ккал/ч). Следовательно, восемь секций радиатора Н-136 имели площадь теплоотдающей поверхности, равную 2 м 2 или 2 м 2 энп (экм).
Исчисление площади внешней поверхности любого отопительного прибора в условных единицах и определение для одного и того же элемента прибора (секции, ребристой трубы, конвектора, панели) отношения площади эквивалентной нагревательной поверхности fэ к площади ею физической внешней поверхности fф есть сравнение конкретного прибора с эталонным.
Сопоставление площади поверхности одного элемента отопительного прибора в м 2 энп (экм) с площадью его поверхности в м 2 дает возможность судить о совершенстве прибора в теплотехническом отношении.
Измерение поверхности отопительных приборов в м 2 энп не изменяет формы уравнений; изменяются лишь численные коэффициенты а, b и m (при сохранении значений n и p).
Уравнение для водяных отопительных приборов примет вид:
Для паровых отопительных приборов уравнение принимает вид:
где kэ — коэффициент теплопередачи, отнесенный к 1 м 2 эквивалентной нагревательной поверхности прибора;
На основании уравнений можно написать формулы для определения плотности теплового потока, передаваемого через 1 м 2 эквивалентной нагревательной поверхности (через 1 экм) любого отопительного прибора.
При теплоносителе воде:
при теплоносителе паре:
В этих формулах и в приведенных выше уравнениях температурный напор вычисляется по выражению как Δt=tт-tв в зависимости от средней температуры теплоносителя в отопительных приборах.
В системах водяного отопления, как уже указывалось, за температуру теплоносителя tт принимается
т. е. полусумма температуры воды, входящей tвх и выходящей tвых из прибора.
Применительно к однотрубным системам водяного отопления с последовательно соединенными отопительными приборами выражение, если тепловая мощность прибора Qпр, Вт, принимает вид:
Уравнение более удобно для пользования, так как при расчете площади нагревательной поверхности приборов в однотрубных стояках известна температура воды, входящей в прибор, а температура выходящей воды зависит от расхода Gпр, не всегда заранее известного.
В системах парового отопления, как уже отмечалось, за температуру теплоносителя принимается
Выражение для определения относительного расхода воды в отопительном приборе G в формулах имеет вид:
для колончатых радиаторов и колончатых стальных панелей при испытательном расходе воды Gисп=17,4 кг/(ч м 2 энп).
для остальных отопительных приборов
Для определения относительного расхода воды в колончатых радиаторах и панелях необходимо знать площадь нагревательной поверхности (чтобы найти действительный расход воды, приходящийся на 1 м 2 энл), которая в вычислениях является искомой величиной.
Поэтому выражение должно быть видоизменено, что будет сделано несколько ниже.
Каждая формула для определения плотности теплового потока, передаваемого через 1 м 2 энп конкретного отопительного прибора при теплоносителе воде, отражает влияние на тепловой поток, поступающий в помещение, следующих факторов:
а) температурного напора Δtсp (как и при теплоносителе паре);
б) расхода воды Gпp;
в) дополнительной потери тепла через наружное ограждение в связи с размещением около него прибора (в формулу вводится значение knp, уменьшенное на 5% против действительного);
г) схемы движения воды в приборе, обусловленной способом его присоединения к трубам, т. е. местами подачи и отвода воды (в формуле изменяются числовые значения коэффициента m’ показателей степени n и p).
Для примера в таблице приведена часть формул, по которым определяется плотность теплового потока через 1 м 2 энп колончатых радиаторов и панелей при теплоносителе воде.
Формулы для определения поверхностной плотности теплового потока колончатых радиаторов и панелей при схеме движения воды сверху-вниз (односторонней и разносторонней)
| носительный расход воды G | Плотность теплового потока qэ | |
| Вт/м 2 энп | ккал/(ч м 2 энп) | |
| 1-7 | ||
| >7 | 2,2*Δср 1,32 | 1,89*Δср 1,32 |
В формуле даются: коэффициент m’=2,08 (1,79) и показатели степени: при температурном напоре 1+n= 1,32 и при относительном расходе р=0,03. Формула представлена в виде, приведенном к температуре воды tвx, входящей в прибор, и к перепаду температуры воды Δtпр в приборе. В таком виде формулой удобно пользоваться при расчете отопительных приборов однотрубных систем водяного отопления.
Схемы подачи и отвода воды из колончатых радиаторов
Теплотехнические испытания чугунных радиаторов при относительном расходе воды G>7 не выявили дальнейшей зависимости коэффициента теплопередачи и плотности теплового потока от количества воды, протекающей через них. Поэтому при G>7 формула меняется формулой, в которой влияние расхода воды учитывается увеличением постоянного множителя m’ до 2,2 (1,89).
Формулы, приведенные в таблице, действительны в пределах изменения температурного напора от 30 до 140°.
Подобную же структуру имеют формулы для определения плотности теплового потока колончатых радиаторов и панелей при других схемах движения воды, а также остальных отопительных приборов.
Рассмотрим влияние схемы движения и расхода воды на плотность теплового потока отопительных приборов на примере колончатых радиаторов и панелей. Перепишем уравнение в виде:
α=Gp—поправочный коэффициент, зависящий от расхода воды в приборе.
Влияние схемы движения воды, обусловленной схемой присоединения колончатых радиаторов и панелей к трубам, установим при действительном расходе воды, равном 17,4 кг/(ч м 2 энп), когда поправочный коэффициент α равен единице. Вычислим и запишем в таблице плотность теплового потока q1 при Δtср=0,5 (95+10)-18=64,5°.
Поверхностная плотность теплового потока q1 колончатого радиатора или колончатой панели при G=1 и Δtср=64,5°.
| Схемы движения воды | Плотность теплового потока qт | ||
| Вт/м 2 энп | ккал/(ч-м 2 энп) | % | |
| Сверху-вниз | 506 | 435 | 100 |
| Снизу-вниз | 455 | 391 | 90 |
| Снизу-вверх (односторонняя) | 395 | 339 | 78 |
Сопоставление полученных значений плотности теплового потока позволяет оценить тепловую эффективность различных схем подачи и отвода воды при ее относительном расходе, равном единице, для стандартно установленных колончатых радиаторов и панелей: наиболее эффективна схема движения воды сверху — вниз, теплопередача при схеме снизу — вниз сокращается на 10%, а при схеме снизу — вверх — на 22% по сравнению со схемой сверху — вниз.
Зависимость поверхностной плотности теплового потока колончатых радиаторов и панелей qэ при Δtср=64,5° соотносительного расхода воды G для схем движения воды
Уменьшение плотности теплового потока при подаче воды в прибор снизу объясняется усилением неравномерности температурного поля его внешней поверхности, связанной с понижением температуры во вторичных контурах циркуляции воды внутри прибора. При односторонней подаче снизу и отводе воды сверху создается наиболее неровное поверхностное температурное поле («отстает», как говорят, часть площади прибора, удаленная от места ввода горячей воды) и в результате значительно сокращается общий тепловой поток от теплоносителя через внешнюю поверхность прибора в помещение.
Влияние расхода воды на плотность теплового потока колончатых радиаторов и панелей проследим по графикам на рисунке, относящимся к первым трем рассмотренным выше схемам движения воды.
При увеличении относительного расхода воды от 1 до 7 плотность теплового потока qэ возрастает, но в различном темпе в зависимости от схемы движения воды в приборе.
Численные множители к величине q1, приведенные выше, выражают максимальное значение поправочного коэффициента α для колончатых радиаторов и панелей в формуле:
| для схемы сверху — вниз | αм = 1,07 |
| для схемы снизу — вниз | αм = 1,23 |
| для односторонней схемы снизу — вверх | αм = 1,18 |
При относительном расходе воды в радиаторе или панели G α>1.
Расчет мощности конвектора: полезные таблицы и формулы
При проектировании системы отопления в квартире или доме важно определить необходимую мощность теплового оборудования. Для этого нужно знать площадь помещения, высоту потолков, количество внешних стен и окон для применения повышающего коэффициента. Если высота потолков в доме – около 2,7 м, вы легко произведете расчет мощности конвекторов по площади. Согласно нормам СНиП 41-01-2003, 1 кВт тепловой энергии достаточно для обогрева 10 кв. м помещения.
Технические параметры батарей нового поколения
Если сравнивать современные модели из чугуна и алюминия или биметалла, то площадь секции первых будет уступать последним, что требует большего количество элементов для эффективного обогрева помещения. В остальном новые чугунные батареи отопления характеристики имеют вполне достойные внимания потребителей. Основными параметрами качества батарей любого типа являются их уровень теплоотдачи, ширина каналов, рабочее давление и степень нагрева воды. У чугунных радиаторов нового образца они следующие:
Изобретатели современных батарей из алюминия, стали и биметалла, стали применять очень узкие каналы, в которых помещается всего 0.2-0.5 литров воды, что увеличивает не только скорость нагрева прибора, а значит, и экономию средств на отоплении, но и быстроту его засорения. Чем уже зазор, тем быстрее в нем скапливается мусор. В этом отношении все преимущества имеет чугунная батарея, технические характеристики которой в вопросе ширины каналов не поменялись с советского периода.
Так выглядят современные чугунные радиаторы отопления, характеристики и теплоотдача которых практически не уступают новомодным устройствам из других металлов, а в чем-то даже превосходят их.
Устройство чугунных батарей
Если раньше радиаторы любой модели имели стандартный вид «гармошки», то современные конструкции могут быть с популярной плоской поверхностью или выглядеть под старину. При этом устройство чугунного радиатора отопления в разрезе совсем не поменялось.
Они представляют собой конвективно-радиационные секции с круглыми или эллипсообразными каналами. При их нагреве используются два способа отдачи тепла:
Секции радиаторов выплавляют из серого чугуна в готовых формах, который затем подвергается грунтовке и покраске. Из нескольких элементов собирается батарея нужной длины и мощности нагрева посредством соединения при помощи ниппелей и прокладок из паронита.
Среди этих изделий встречаются секции, состоящие из одной или двух колонн, или многоколонные устройства. В современных конструкциях чаще всего отливают несколько колонн, так как они значительно легче своих советских «собратьев».
Если рассмотреть строение секций чугунных радиаторов отопления, характеристики их таковы:
Определив, какая необходима мощность для обогрева комнаты, покупается нужное количество секций, соединяются в батарею и монтируются на выбранном месте. Установка в работающей теплосети не составит труда, если идет замена старых батарей из чугуна на новые из того же металла.
Сколько кВт в радиаторе: подсчеты, количество ребер, тепловая мощность батарей из чугуна, алюминия и биметаллических изделий
Чтобы отопление жилища было эффективным, следует купить качественные его элементы. Перед этим — осуществить правильный расчет их мощности.
При расчетах следует учитывать теплопотери жилья.
Вычисления производятся с учетом:
Рассчитать производительность приспособлений можно своими силами. Для этого надо знать, сколько кВт в 1 секции алюминиевого радиатора или чугунного, стального, биметаллического аналога.
Правильный выбор
Пример теплопередачи алюминиевого изделия.
После определения тепловых потерь нужно определить производительность прибора (сколько кВт в стальном радиаторе или других приборах должно быть).
Обратите внимание!
Если жилище расположено в регионе с суровыми зимами, надо полученную цифру умножить на 1.2 (коэффициент потери тепла).
Итоговая цифра составит 2214 Ватт.
Далее надо рассчитать число секций в батарее. В инструкциях к изделиям указывается параметр каждого их ребра.
Из нее вы узнаете, сколько кВт в одной секции биметаллического радиатора и алюминиевого аналога – это 150-200 Вт. Возьмем максимальный параметр и разделим на него общую требуемую мощность в нашем примере: 2214_200=11.07. Значит, для обогрева комнаты нужна батарея из 11 секций.
Тепловая мощность
На фото — примерная теплопередача чугуна.
В комнате отопительные приспособления ставятся у наружной стены под оконным проемом. Вследствие этого, излучаемое прибором тепло распределяется оптимально. Холодный воздух, поступающий от окон, блокируется нагретым потоком, идущим наверх от радиатора.
Чугунные аналоги имеют такие плюсы:
Недостатки изделий: большая масса и тепловая инерционность.
Нижняя таблица озвучивает, сколько кВт в чугунном радиаторе, исходя из его модели.
Обратите внимание!
Чтобы отопить комнату, площадью 15 м², мощность, то есть кВт чугунного радиатора, должно быть не менее 1.5. Иными словами, батарея должна состоять из 10-12 секций.
Радиаторы из алюминия
Так меняется теплоотдача алюминиевой продукции.
Изделия из алюминия имеют большую тепловую мощность, чем аналоги из чугуна. При вопросе о том, сколько кВт в одной секции алюминиевого радиатора, специалисты отвечают, что она доходит до 0.185-0.2 кВт. В итоге для нормативного уровня прогревания пятнадцатиметрового помещения будет достаточно 9-10 секций алюминиевых секций.
Преимущества таких приборов:
Но изделия из алюминия не имеют такой прочности, как аналоги чугунные, например масляный радиатор 2 кВт. Поэтому они чувствительны к скачкам рабочего давления в системе, гидравлическим ударам, излишне высокой температуре носителя тепла.
Обратите внимание!
Когда у воды уровень рН (кислотность) повышенный, алюминий выделяет много водорода.
Это негативно влияет на наше здоровье.
Исходя из этого, такие приборы желательно применять в обогревательной системе, теплоноситель в которой обладает нейтральной кислотностью.
Строение биметаллического изделия.
Прежде чем выяснить, сколько кВт в 1 секции биметаллического радиатора, следует учесть, что такие батареи обладают похожими эксплуатационными параметрами с алюминиевыми аналогами. Однако у них нет минусов, им свойственных.
Это обстоятельство обусловила конструкция приборов.
Именно стальные трубы сообщают биметаллическому изделию отличные технические характеристики.
Благодаря стали труб приспособление имеет высокую прочность. Повышенную теплоотдачу обеспечивают внешние ребра из алюминия. Пытаясь узнать, сколько кВт в стальном радиаторе, учтите, что биметалл имеет самую высокую теплоотдачу — около 0.2 кВт на одно ребро.
Выяснив, сколько кВт в 1 секции стального радиатора либо аналога из другого металла, вы сможете рассчитать теплопередачу приобретаемой продукции. Это позволит вам обустроить эффективную отопительную систему в своем жилище.
Как перевести квт в экм для конвекторов
Автор Ёветлана задал вопрос в разделе Строительство и Ремонт
Вопрос к сметчикам и не только, по поводу единицы измерения 100 ЭКМ в расценке на установку конвектора и получил лучший ответ
Ответ от Елена Патрушева[гуру].За 1 экм принималась площадь эквивалентной поверхности, передающая тепловой поток в 560 Вт при разности средних температур 64,5 °С и расходе воды 17,4 кг/(ч х экм) для радиаторов и ребристых труб или 300 кг/ч для конвекторов.
Соотношение эквивалентных квадратных метров и киловатт следующее:
-для радиаторов и конвекторов без кожуха 1 ЭКМ=0,56кВт
-для конвекторов с кожухом 1 ЭКМ=0,57кВт
Приборы, у которых теплоотдача за счет конвекции составляет более 75%, относятся к группе конвекторов, а приборы, передающие более 25% общего количества тепла лучеиспусканием, относятся к группе радиаторов
ссылка
Техническую характеристику конвекторов разных марок (в том числе кол-во экм прибора) см. в таблице 25.
Уважаемые господа-эксперты! Чудовищно срочная проблема, помогите, кто сможет, или подскажите, где искать!
Нужно перевести Экм в киловатты. Была раньше такая дурацкая единица. А суть такая: в смете, составленной базисно-индексным методом в ценах 84 г указано: «Радиаторы чугунные экм – 109,20» Сколько это будет в кВт?!
Буду благодарен за любую подсказку.
Желание заменить старые батареи из чугуна на современные стильные изделия из стали, алюминия или биметалла порождает сомнения в качестве последних. Зная срок службы чугунных радиаторов отопления в квартире, потребители интуитивно ищут аналоги с такой же длительной продолжительностью «жизни». Так же они желают, чтобы отопительное устройство работало настолько же эффективно, как и изделия из чугуна.
Немаловажным при этом так же является показатель, сколько экм в 1 секции чугунного радиатора. Именно параметры эквивалентного квадратного метра обозначают площадь нагрева поверхности прибора.
Теплоотдача радиаторов из чугуна
Как правило, мощность одной секции батареи зависит от ее размера. Чем шире площадь обогревателя, тем выше его теплоотдача, но даже при одинаковых параметрах, у разных производителей она может отличаться. Например:
Таким образом, подсчитав, какое количество тепла нужно для нагрева помещения, можно узнать, сколько секций чугунного радиатора потребуется. Разобраться в этом поможет техпаспорт изделия, где указаны все его технические параметры.
Перевод единиц измерения 1 кВт, 1 ккал/ч, 1 МДж/ч, 1кВтч, 1 кПа, 1 атм, 1 мбар
Единицы измерения мощности ↓
Единицы измерения давления ↓
Вас также может заинтересовать
Загазованность котельной — процесс образования в воздухе оксида углерода OC в той концентрации, которая может нанести вред здоровью работающего персонала. Вероятность возникновения подобной ситуации существует вне зависимости от типа топлива, на котором работает котельная установка.
Модульные котельные системы предназначаются для обеспечения ГВС и теплом жилых и производственных помещений, разного рода административных, социальных, бытовых и промышленных зданий. Это мобильные установки, выполненные в блочном варианте, которые содержат всё требуемое для нормального функционирования оборудования. К объекту они поставляются в практически готовом виде, а монтаж осуществляется в очень сжатые сроки.
Мазут — это смесь углеводородов, нефтяных смол, асфальтенов, карбенов, карбоидов и органических соединений, содержащих металлы (V, Ni, Fe, Mg, Na, Ca).
Иными словами — как работают котельные установки? Давайте рассмотрим принцип выработки тепловой энергии на примере водогрейной котельной и заодно узнаем, какое оборудование за что отвечает.
Блочно-модульные котельные — это, без всяких сомнений, один из популярнейших видов котельного оборудования сегодня.












