Как перевести десятичную в троичную
Перевести число 263 из десятичной системы в троичную
Задача: перевести число 263 из десятичной системы счисления в 3-ую.
Для того, чтобы перевести число 263 из десятичной системы счисления в 3-ую, необходимо осуществить последовательное деление на 3, до тех пор пока остаток не будет меньше чем 3.
| — | 263 | 3 | ||
| 261 | — | 87 | 3 | |
| 2 | 87 | — | 29 | 3 |
| 0 | 27 | — | 9 | 3 |
| 2 | 9 | — | 3 | 3 |
| 0 | 3 | 1 | ||
| 0 |
Полученные остатки записываем в обратном порядке, таким образом:
Подробнее о том, как переводить числа из десятичной системы в троичную, смотрите здесь.
Перевод чисел из одной системы счисления в любую другую онлайн
Ура. Вам стало интересно как получилось данное число
Вы ввели число:6510 в десятичной системе счисления и хотите перевести его в троичную.
Переведем 6510 в троичную систему вот так:
Целая часть числа находится делением на основание новой
| 65 | 3 | ||
| -63 | 21 | 3 | |
| 2 | -21 | 7 | 3 |
| 0 | -6 | 2 | |
| 1 | |||
![]() | |||
Получилось: 6510 = 21023
Постоянная ссылка на результат этого расчета
Калькулятор перевода чисел имеет одно поле для ввода. В это поле необходимо ввести число которое Вы хотите перевести.
После этого Вам обязательно нужно указать в какой системе счисления Вы его ввели. Для этого под полем ввода есть графа «Его система счисления».
После нажмите кнопку «ПЕРЕВЕСТИ» и результат появится в соответствующем поле. Если Вы хотите получить подробный ход решения, то нажмите на соответствующую ссылку.
Научиться переводить число из одной системы счисления в другую очень просто.
Любое число может быть легко переведено в десятичную систему по следующему алгоритму:
Каждая цифра числа должна быть умножена на основание системы счисления этого числа возведенное в степень равное позиции текущей цифры в числе справа налево, причём счёт начинается с 0.
Перевод чисел из одной системы счисления в любую другую онлайн
Ура. Вам стало интересно как получилось данное число
Вы ввели число:1010 в десятичной системе счисления и хотите перевести его в троичную.
Переведем 1010 в троичную систему вот так:
Целая часть числа находится делением на основание новой
| 10 | 3 | |
| -9 | 3 | 3 |
| 1 | -3 | 1 |
| 0 | ||
![]() | ||
Получилось: 1010 = 1013
Постоянная ссылка на результат этого расчета
Калькулятор перевода чисел имеет одно поле для ввода. В это поле необходимо ввести число которое Вы хотите перевести.
После этого Вам обязательно нужно указать в какой системе счисления Вы его ввели. Для этого под полем ввода есть графа «Его система счисления».
После нажмите кнопку «ПЕРЕВЕСТИ» и результат появится в соответствующем поле. Если Вы хотите получить подробный ход решения, то нажмите на соответствующую ссылку.
Научиться переводить число из одной системы счисления в другую очень просто.
Любое число может быть легко переведено в десятичную систему по следующему алгоритму:
Каждая цифра числа должна быть умножена на основание системы счисления этого числа возведенное в степень равное позиции текущей цифры в числе справа налево, причём счёт начинается с 0.
Перевести число 523 из десятичной системы в троичную
Задача: перевести число 523 из десятичной системы счисления в 3-ую.
Для того, чтобы перевести число 523 из десятичной системы счисления в 3-ую, необходимо осуществить последовательное деление на 3, то тех пор пока остаток не будет меньше чем 3.
| — | 523 | 3 | ||
| 522 | — | 174 | 3 | |
| 1 | 174 | — | 58 | 3 |
| 0 | 57 | — | 19 | 3 |
| 1 | 18 | — | 6 | 3 |
| 1 | 6 | 2 | ||
| 0 |
Полученные остатки записываем в обратном порядке, таким образом:
Подробнее о том, как переводить числа из десятичной системы в троичную, смотрите здесь.
Системы счисления. Перевод из одной системы в другую.
1. Порядковый счет в различных системах счисления.
В современной жизни мы используем позиционные системы счисления, то есть системы, в которых число, обозначаемое цифрой, зависит от положения цифры в записи числа. Поэтому в дальнейшем мы будем говорить только о них, опуская термин «позиционные».
Для того чтобы научиться переводить числа из одной системы в другую, поймем, как происходит последовательная запись чисел на примере десятичной системы.
Поскольку у нас десятичная система счисления, мы имеем 10 символов (цифр) для построения чисел. Начинаем порядковый счет: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Цифры закончились. Мы увеличиваем разрядность числа и обнуляем младший разряд: 10. Затем опять увеличиваем младший разряд, пока не закончатся все цифры: 11, 12, 13, 14, 15, 16, 17, 18, 19. Увеличиваем старший разряд на 1 и обнуляем младший: 20. Когда мы используем все цифры для обоих разрядов (получим число 99), опять увеличиваем разрядность числа и обнуляем имеющиеся разряды: 100. И так далее.
Попробуем сделать то же самое в 2-ной, 3-ной и 5-ной системах (введем обозначение для 2-ной системы, для 3-ной и т.д.):
| 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 |
| 2 | 10 | 2 | 2 |
| 3 | 11 | 10 | 3 |
| 4 | 100 | 11 | 4 |
| 5 | 101 | 12 | 10 |
| 6 | 110 | 20 | 11 |
| 7 | 111 | 21 | 12 |
| 8 | 1000 | 22 | 13 |
| 9 | 1001 | 100 | 14 |
| 10 | 1010 | 101 | 20 |
| 11 | 1011 | 102 | 21 |
| 12 | 1100 | 110 | 22 |
| 13 | 1101 | 111 | 23 |
| 14 | 1110 | 112 | 24 |
| 15 | 1111 | 120 | 30 |
Если система счисления имеет основание больше 10, то нам придется вводить дополнительные символы, принято вводить буквы латинского алфавита. Например, для 12-ричной системы кроме десяти цифр нам понадобятся две буквы ( и ):
| 0 | 0 |
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
| 4 | 4 |
| 5 | 5 |
| 6 | 6 |
| 7 | 7 |
| 8 | 8 |
| 9 | 9 |
| 10 | |
| 11 | |
| 12 | 10 |
| 13 | 11 |
| 14 | 12 |
| 15 | 13 |
2.Перевод из десятичной системы счисления в любую другую.
Чтобы перевести целое положительное десятичное число в систему счисления с другим основанием, нужно это число разделить на основание. Полученное частное снова разделить на основание, и дальше до тех пор, пока частное не окажется меньше основания. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.
Пример 1. Переведем десятичное число 46 в двоичную систему счисления.
Пример 2. Переведем десятичное число 672 в восьмеричную систему счисления.
Пример 3. Переведем десятичное число 934 в шестнадцатеричную систему счисления.
3. Перевод из любой системы счисления в десятичную.
Для того, чтобы научиться переводить числа из любой другой системы в десятичную, проанализируем привычную нам запись десятичного числа.
Например, десятичное число 325 – это 5 единиц, 2 десятка и 3 сотни, т.е.
Точно так же обстоит дело и в других системах счисления, только умножать будем не на 10, 100 и пр., а на степени основания системы счисления. Для примера возьмем число 1201 в троичной системе счисления. Пронумеруем разряды справа налево начиная с нуля и представим наше число как сумму произведений цифры на тройку в степени разряда числа:
Это и есть десятичная запись нашего числа, т.е.
Пример 4. Переведем в десятичную систему счисления восьмеричное число 511.
Пример 5. Переведем в десятичную систему счисления шестнадцатеричное число 1151.
4. Перевод из двоичной системы в систему с основанием «степень двойки» (4, 8, 16 и т.д.).
Для преобразования двоичного числа в число с основанием «степень двойки» необходимо двоичную последовательность разбить на группы по количеству цифр равному степени справа налево и каждую группу заменить соответствующей цифрой новой системы счисления.
Например, Переведем двоичное 1100001111010110 число в восьмеричную систему. Для этого разобьем его на группы по 3 символа начиная справа (т.к. ), а затем воспользуемся таблицей соответствия и заменим каждую группу на новую цифру:
Таблицу соответствия мы научились строить в п.1.
| 0 | 0 |
| 1 | 1 |
| 10 | 2 |
| 11 | 3 |
| 100 | 4 |
| 101 | 5 |
| 110 | 6 |
| 111 | 7 |
Пример 6. Переведем двоичное 1100001111010110 число в шестнадцатеричную систему.
| 0 | 0 |
| 1 | 1 |
| 10 | 2 |
| 11 | 3 |
| 100 | 4 |
| 101 | 5 |
| 110 | 6 |
| 111 | 7 |
| 1000 | 8 |
| 1001 | 9 |
| 1010 | A |
| 1011 | B |
| 1100 | C |
| 1101 | D |
| 1110 | E |
| 1111 | F |
5.Перевод из системы с основанием «степень двойки» (4, 8, 16 и т.д.) в двоичную.
Этот перевод аналогичен предыдущему, выполненному в обратную сторону: каждую цифру мы заменяем группой цифр в двоичной системе из таблицы соответствия.
Пример 7. Переведем шестнадцатеричное число С3A6 в двоичную систему счисления.
Для этого каждую цифру числа заменим группой из 4 цифр (т.к. ) из таблицы соответствия, дополнив при необходимости группу нулями вначале:



