Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Треугольники: равные, равнобедренные. Первый, второй и третий признаки равенства треугольников. Перпендикуляр, высота, медиана, биссектриса, основание, вершина, боковая сторона. Свойства и признаки равнобедренного треугольника. Серединный перпендикуляр, геометрическое место точек, первая замечательная точка. Подробные доказательства теорем.

Наглядная геометрия 7 класс. Опорный конспект № 2 «Треугольники».

Как оформлять конспект по геометрии

Треугольник — одна из самых замечательных и самых важных фигур в геометрии. Все знают, как он выглядит. Но что же такое треугольник? Допустим, что треугольник — это замкнутая ломаная из трех звеньев. Можно представить себе треугольник, сделанный из проволоки. Но известно, что у него есть площадь. Поэтому треугольник — это трехзвенная замкнутая ломаная вместе с частью плоскости, которую она ограничивает. Представьте себе треугольник, сделанный из фанеры или вырезанный из картона.

Очень важным моментом при решении геометрических задач является нахождение равных треугольников. Очевидно, что если у двух треугольников все стороны и углы окажутся соответственно равными, то и треугольники будут равны. На практике равные треугольники определяют, прикладывая их друг к другу. Если треугольники совпадут при наложении, значит, они равны. Этот способ и позволяет дать определение равных треугольников.

Но вот, допустим, у каждого из двух треугольников есть две стороны, которые равны 5 см и 6 см, и какой-то из углов равен 50°. Можно ли утверждать, что треугольники равны? Оказывается, нет. На рисунке вы видите два треугольника с указанными размерами. Они не равны.Как оформлять конспект по геометрии

При каких же минимальных условиях треугольники будут равны? Существуют по крайней мере три признака равенства треугольников, когда по равенству некоторых сторон и углов можно абсолютно точно сказать, что они равны. Например, если бы угол 50° был образован сторонами длиной 5 см и 6 см, то треугольники были бы равны между собой.Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Опорный конспект «Треугольники»

Треугольник — это трехзвенная замкнутая ломаная вместе с частью плоскости, которую она ограничивает. Сумма длин всех трех сторон треугольника называется периметром. Треугольники называются равными, если совпадают при наложении. Если равные треугольники наложить так, что они совпадут, то окажется, что в равных треугольниках против равных сторон лежат равные углы, а против равных углов лежат равные стороны.

Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. Действительно, если наложить треугольники друг на друга равными углами, то совпадут и равные стороны. Значит, совпадут и оставшиеся две вершины.

Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Если наложить треугольники друг на друга равными сторонами, то совпадут углы, прилежащие к этим сторонам. Значит, совпадут и третьи вершины.

Перпендикуляром, опущенным из данной точки на данную прямую, называется отрезок прямой, перпендикулярной данной, проходящей через данную точку, с концами в данной точке и в точке пересечения с данной прямой. Точка пересечения называется основанием перпендикуляра.

Высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на противоположную сторону или ее продолжение.

Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, заключенный между вершиной и точкой пересечения биссектрисы угла и стороны треугольника.

Треугольник, у которого две стороны равны, называется равнобедренным. Равные стороны называются боковыми сторонами, третья сторона — основанием, вершина напротив этой стороны — вершиной равнобедренного треугольника. Причем названия «основание», «боковые стороны» и «вершина» равнобедренного треугольника сохраняются, как бы треугольник ни был расположен.

Свойства равнобедренного треугольника. 1. В равнобедренном треугольнике углы при основании равны. 2. Биссектриса равнобедренного треугольника, проведенная из вершины к основанию, является высотой и медианой.

Признак равнобедренного треугольника (по двум углам). Если в треугольнике два угла равны, то он равнобедренный.

Есть еще три признака равнобедренного треугольника. Треугольник является равнобедренным, если:

Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Серединным перпендикуляром к отрезку называется прямая, перпендикулярная этому отрезку и проходящая через его середину.

Свойство точек серединного перпендикуляра. Любая точка серединного перпендикуляра равноудалена от концов отрезка. Если точка равноудалена от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Геометрическое место точек (ГМТ) — это множество всех точек плоскости, обладающих общим свойством. Например, все точки серединного перпендикуляра равноудалены от концов отрезка, и все точки плоскости, равноудаленные от концов отрезка, лежат на серединном перпендикуляре.

Первая замечательная точка. Все три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке — центре описанной окружности.

Источник

Как оформлять конспект по геометрии

Геометрия — математическая наука о пространственных формах, размерах и соотношениях геометрических объектов (фигур, тел). Слово «гeoметрия» греческого происхождения («geo» — земля, «metreo» — измеряю).

Планиметрия — раздел геометрии,в котором изучают свойства фигур,расположенных в одной плоскости. Слово «планиметрия» происходит от латинского корня «planum» — плоская поверхность и греческого — «metreo» — измеряю.

Стереометрия — раздел геометрии, в котором изучают свойства пространственных тел. Слово «стереометрия» происходит от греческих слов «stereos» — пространственный, «metreo» — измеряю.

Периоды развития геометрии

I период — зарождение геометрии как математической науки, начало которого теряется в глубине столетий, а концом считают V в. до н.э. Этот период характеризуется накоплением фактов и установлением первых зависимостей между геометрическими фигурами. Начался он в Древнем Египте и Вавилоне, в VII в. до н.э. Эти знания были перенесены в Грецию, где постепенно они начали оформляться в четкую систему.

II период — (V в. до н.э. — XVII в. н.э.) — период возникновения и дальнейшего развития геометрии как самостоятельной науки. Около 300 лет до н.э. появились «Начала» Эвклида, в которых гeoметрия была систематизирована. Развитию геометрии способствовали ученые Греции, арабского Востока, Средней Азии, Индии, Китая, средневековой Европы.

III период — (XVII в. — 1826 г.). На этом этапе геометрия как наука рассматривает более общие фигуры и применяет совершенно новые методы. В этот период возникают: аналитическая геoметрия, дифференциальная геомeтрия, проективная геoметрия, начертательная гeометрия.

IV период — (1826 год) начинается с открытия Н. И. Лобачевским неэвклидовой геометрии, которая включает в себя геометрию Эвклида. В направлениях, начертанных выдающимися математиками, развивается современная геомeтрия. Одним из важных разделов современной геометрии является топология.

Источники идей и цитат для конспектов по Геометрии:

(с) Цитаты из вышеуказанных учебных пособий использованы на сайте в незначительных объемах, исключительно в учебных и информационных целях (пп. 1 п. 1 ст. 1274 ГК РФ).

Источник

Как оформлять конспект по геометрии

Наглядная геометрия 7 класс. Опорный конспект № 1 «Прямая. Окружность. Угол».

Как оформлять конспект по геометрии

Геометрия изучает геометрические фигуры и их свойства. Простейшие (основные) фигуры: точка, прямая, плоскость. Вы знаете и другие фигуры: луч, отрезок, угол, окружность, треугольник, параллелепипед.

Математическая точка не бывает большой или маленькой. Она не имеет размеров. Математическая точка — это воображаемая точка, хотя мы ее и рисуем.

Что такое прямая? На этот вопрос нельзя ответить. Прямую можно представить как туго натянутую бесконечную нить или как тонкий луч света, пролетающий в бесконечном пространстве. Прямая не имеет толщины, но бесконечна в обе стороны. Прямая на плоскости разбивает плоскость на две полуплоскости.

Если на прямой отметить точку, то получим два луча. Два луча, выходящие из одной точки, образуют угол. Если на прямой взять две точки, то получим отрезок. Отрезки, соединенные последовательно концами, образуют ломаную. Замкнутая ломаная образует многоугольник.

Одно из самых первых свойств: «Через две точки проходит единственная прямая». Его принимают без доказательства. Свойства, которые принимают без доказательства, называются аксиомами. Свойства, истинность которых устанавливается путем логических рассуждений, называются теоремами.

Как оформлять конспект по геометрии

Опорный конспект «Прямая. Окружность. Угол»

Свойства прямой. Через две точки можно провести единственную прямую. Если две прямые пересекаются, то в единственной точке. В двух точках пересекаться они не могут, так как через две точки можно провести единственную прямую.

Прямые называются параллельными, если они ЛЕЖАТ В ОДНОЙ ПЛОСКОСТИ и не пересекаются, сколько бы их ни продолжали. Требование, чтобы прямые лежали в одной плоскости, обязательно. Существуют прямые, которые не пересекаются и в то же время не параллельны. Они называются скрещивающимися (представьте реку и мост через нее). На рисунке это две прямые, проходящие через указанные ребра куба.

Части прямой — это отрезок и луч.

Отрезок — это часть прямой, ограниченная двумя точками. Равными называются отрезки, которые совпадают при наложении. Если на отрезке отметить точку, то она разобьет его на два отрезка, сумма длин которых равна длине данного отрезка.

Луч — это часть прямой, ограниченная одной точкой. Поэтому он бесконечен в одну сторону. Два луча называются противоположными, если они имеют общее начало и дополняют друг друга до прямой.

Фигура, которую можно составить из отрезков, последовательно соединенных концами, — ломаная. Если начало первого отрезка совпадает с концом последнего, то такая ломаная называется замкнутой. Если звенья ломаной не пересекаются и соседние звенья не лежат на одной прямой, то она называется простой. Изображенная на рисунке звездочка — замкнутая ломаная из пяти звеньев, которая не является простой ломаной.

Окружность — это фигура, которая состоит из всех точек плоскости, равноудаленных от данной. Важная часть определения ИЗ ВСЕХ ТОЧЕК ПЛОСКОСТИ. Если опустить «из всех точек», то можно получить дугу окружности. Она тоже состоит из точек плоскости, равноудаленных от данной. А если опустить «плоскости», то можно получить сферу. Она тоже состоит из точек, равноудаленных от данной. С окружностью связано семь элементов: радиус, дуга, хорда, диаметр, круг, сектор, сегмент. Иногда путают круг и окружность. Окружность — ЭТО ЛИНИЯ, а круг — это часть плоскости, ограниченная окружностью.

Два луча, выходящие из одной точки, образуют угол. Равными называются углы, которые совпадают при наложении. Биссектрисой угла называется луч, который выходит из вершины и делит его на два равных угла.

Различают развернутый, прямой, острый, тупой и полный углы. Развернутым называется угол, образованный противоположными лучами. Развернутый угол равен 180°, прямой — 90°, острый — меньше 90°, тупой — больше 90°, но меньше 180°. Если увеличивать развернутый угол, то получим сверхтупой угол, а когда стороны угла совпадут — полный угол. Полный угол равен 360° (веер, раскрытый до предела). Ясно, что прямой угол получится, если провести биссектрису развернутого угла.

Если внутри угла из его вершины провести луч, то он разобьет данный угол на два угла, сумма градусных мер которых равна градусной мере данного угла.

Если у двух углов одна сторона общая, а две другие — противоположные лучи, то это СМЕЖНЫЕ углы. Сумма смежных углов равна 180° (они образуют развернутый угол).

При пересечении двух прямых образуется две пары противоположных углов — это ВЕРТИКАЛЬНЫЕ углы (их стороны — противоположные лучи). Вертикальные углы равны (углы 1 и 3 в сумме дают 180° как смежные, и углы 2 и 3 в сумме дают 180° как смежные, отсюда ∠1 = ∠2).

Перпендикулярными называются прямые, которые пересекаются под прямым углом. Перпендикуляром к данной прямой называется отрезок прямой, перпендикулярной данной, один конец которого является точкой их пересечения. Он называется основанием перпендикуляра. Через точку, лежащую на прямой, можно провести единственную прямую, перпендикулярную данной. То же касается точки, не лежащей на прямой. Очень важной является теорема о двух перпендикулярах: две прямые, перпендикулярные третьей, параллельны между собой (если бы они пересекались, то из точки на прямую можно было бы опустить два перпендикуляра, что невозможно).

Ответы на вопросы к теме «Прямая. Окружность. Угол»

Это конспект по геометрии «Прямая. Окружность. Угол». Выберите дальнейшие действия:

Источник

Как оформлять конспект по геометрии

Если Вы не нашли темы для своего учебника, то можете добавить оглавление учебника и получить благодарность от проекта «Инфоурок».

Как оформлять конспект по геометрии

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Как оформлять конспект по геометрии

Минздрав включил вакцинацию подростков от ковида в календарь прививок

Время чтения: 1 минута

Как оформлять конспект по геометрии

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Как оформлять конспект по геометрии

В Минпросвещения рассказали о формате обучения школьников после праздников

Время чтения: 1 минута

Как оформлять конспект по геометрии

Названы главные риски для детей на зимних каникулах

Время чтения: 3 минуты

Как оформлять конспект по геометрии

В Думу внесли законопроект об обязательном образовании для находящихся в СИЗО подростков

Время чтения: 2 минуты

Как оформлять конспект по геометрии

В России стартует пилотный проект по реабилитации детей-инвалидов

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Опорные конспекты геометрия 9 класс

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

ОК-1 Понятие вектора. Равенство векторов

Как оформлять конспект по геометрии

Нулевой вектор коллинеарен любому вектору.

Как оформлять конспект по геометрии

Сонаправленными называют ненулевые коллинеарные векторы

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Свойства коллинеарных векторов Как оформлять конспект по геометрииКак оформлять конспект по геометрии

ОК-2 Сумма векторов

Правило треугольника (стр. 195)

Как оформлять конспект по геометрии

Как оформлять конспект по геометрииКак оформлять конспект по геометрии

Как оформлять конспект по геометрии

Правило параллелограмма (стр.197)

Как оформлять конспект по геометрии

Правило многоугольника (стр.198)

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

ОК-3 Вычитание векторов

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Противоположный нулевому вектору будет любой нулевой вектор.

Как оформлять конспект по геометрии

Сумма вектора с ему противоположным вектором равна нулю.

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

ОК-4 Умножение вектора на число

Как оформлять конспект по геометрии

Свойства произведения вектора на число:

Свойства позволяют выполнять преобразования в выражениях, содержащих суммы, разности векторов и произведения векторов на числа, так же как и в числовых выражениях.

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

ОК-5 Координаты вектора

Как оформлять конспект по геометрииКак оформлять конспект по геометрии

Как оформлять конспект по геометрии

Координаты нулевого вектора равны нулю.

Координаты противоположных векторов соответственно

Правила нахождения координат

Как оформлять конспект по геометрииКак оформлять конспект по геометрииКак оформлять конспект по геометрии

ОК-6 Простейшие задачи в координатах

Как оформлять конспект по геометрии

Координаты точки М равны соответствующим координатам её радиус-вектора.

Каждая координата вектора равна разности соответствующих координат его конца и начала (чтобы найти координаты вектора, надо из координат конца вычесть координаты начала).

Каждая координата середины отрезка равна полусумме соответствующих координат его концов.

Длина вектора равна корню квадратному из суммы квадратов его координат.

Определение расстояния между двумя точками

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

ОК-7 Уравнение окружности

Как оформлять конспект по геометрииКак оформлять конспект по геометрии

Как оформлять конспект по геометрииКак оформлять конспект по геометрии

ОК-8 Уравнение прямой Как оформлять конспект по геометрии

проходящей через точку М(х; у),

Как оформлять конспект по геометрииКак оформлять конспект по геометрии

Как оформлять конспект по геометрииКак оформлять конспект по геометрии

ОК-9 Синус, косинус, тангенс, котангенс

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Как оформлять конспект по геометрииКак оформлять конспект по геометрии

Как оформлять конспект по геометрии

ОК-11 Теорема синусов. Теорема косинусов. Решение треугольников

Как оформлять конспект по геометрииКак оформлять конспект по геометрии

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон, умноженное на косинус

Как оформлять конспект по геометрии

по теореме косинусов с =

по теореме синусов b =

по теореме синусов с =

для вычисления углов удобнее использовать теорему косинусов, а не теорему синусов, т.к. по знаку и величине косинуса угол определяется однозначно.

ОК-12 Угол между векторами

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Скалярное произведение в координатах

Как оформлять конспект по геометрии

ОК-13 Скалярное произведение векторов

Скалярным произведением двух векторов называется

Как оформлять конспект по геометрии

Свойства скалярного произведения:

Для любых векторов и любого числа k выполняются соотношения:

Как оформлять конспект по геометрии

Как оформлять конспект по геометрииКак оформлять конспект по геометрии

Как оформлять конспект по геометрии

Скалярный квадрат вектора равен квадрату его длины.

ОК-14 Правильный многоугольник

Многоугольником называется часть плоскости, состоящая из простой замкнутой ломаной и ограниченной ею внутренней области.

Многоугольник – это замкнутая ломаная без самопересечений.

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Правильным многоугольником называется выпуклый многоугольник, у которого все углы равны и все стороны равны .

угол правильного многоугольника

ОК-15 Правильные многоугольники

Как оформлять конспект по геометрии

Теорема. Около любого правильного многоугольника можно описать

окружность, и притом только одну.

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Теорема. В любой правильный многоугольник можно вписать

окружность, и притом только одну. Как оформлять конспект по геометрии

Окружность, вписанная в правильный многоугольник, касается сторон многоугольника в их серединах.

Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в тот же многоугольник.

Эта точка называется центром правильного

ОК-16 Формулы в правильном многоугольнике Как оформлять конспект по геометрииКак оформлять конспект по геометрииКак оформлять конспект по геометрии

Как оформлять конспект по геометрииКак оформлять конспект по геометрииКак оформлять конспект по геометрии

ОК-17 Длина окружности. Площадь круга

Как оформлять конспект по геометрии

Как оформлять конспект по геометрииКак оформлять конспект по геометрии

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

площадь круга радиуса R

Как оформлять конспект по геометрии

Круговой сектор(сектор) часть кру га, ограниченная

дугой и двумя радиусами, соединяющими концы дуги

Дуга, которая ограничивает сектор, называется дугой сектора .

дугой окружности и хордой, соединяющей концы этой

Дуга окружности, ограничивающая сегмент, называется

ОК-18 Движение. Симметрия

Если каждой точке плоскости ставится в соответствие какая-то точка этой же плоскости, причем любая точка плоскости оказывается сопоставленной некоторой точке, то говорят, что дано отображение плоскости на себя .

отображение плоскости на себя

Как оформлять конспект по геометрии

Как оформлять конспект по геометрииКак оформлять конспект по геометрии

Как оформлять конспект по геометрииКак оформлять конспект по геометрии

Как оформлять конспект по геометрии

Движение плоскости – это отображение плоскости на себя, сохраняющее расстояния.

Движения : 1) осевая симметрия

2) центральная симметрия

Равные отрезки отображаются в равные отрезки.

Параллельные прямые отображаются в параллельные прямые.

Углы отображаются в равные им углы.

Треугольник отображается в равный ему треугольник.

ОК-19 Параллельный перенос

П араллельный перенос это п реобразование, при котором каждая точка фигуры перемещается в одном и том же направлении и на одно и то же расстояние.

Как оформлять конспект по геометрии

Параллельный перенос сохраняет расстояния.

Свойства параллельного переноса:

отрезок переходит в равный ему отрезок;

угол переходит в равный ему угол;

многоугольник переходит в равный ему многоугольник;

параллельные прямые переходят в параллельные прямые ;

перпендикулярные прямые переходят в перпендикулярные прямые.

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

если многогранник лежит по если многогранник лежит по разные

одну сторону от плоскости стороны хотя бы от одной

каждой своей грани плоскости, проходящей через грань

Как оформлять конспект по геометрииКак оформлять конспект по геометрии

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

ОК-21 Призма. Параллелепипед

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

если все боковые ребра призмы если боковые ребра призмы

перпендикулярны к плоскостям не перпендикулярны основаниям

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Как оформлять конспект по геометрии

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

Как оформлять конспект по геометрии

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

Как оформлять конспект по геометрии

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

Ищем педагогов в команду «Инфоурок»

Как оформлять конспект по геометрии

Номер материала: ДБ-078322

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Как оформлять конспект по геометрии

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Как оформлять конспект по геометрии

В Минпросвещения рассказали о формате обучения школьников после праздников

Время чтения: 1 минута

Как оформлять конспект по геометрии

Рособрнадзор не намерен упрощать ЕГЭ в 2022 году из-за пандемии

Время чтения: 1 минута

Как оформлять конспект по геометрии

Поставщики интернета для школ будут работать с российским оборудованием

Время чтения: 1 минута

Как оформлять конспект по геометрии

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Как оформлять конспект по геометрии

Названы главные риски для детей на зимних каникулах

Время чтения: 3 минуты

Как оформлять конспект по геометрии

Российские юниоры завоевали 6 медалей на Международной научной олимпиаде

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *